淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0207201018381500
中文論文名稱 太陽能輔助式薄膜蒸餾於海水淡化之應用研究
英文論文名稱 The Study of Solar Assisted Membrane Distillation on Seawater Desalination
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系博士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 陳宗慶
研究生英文姓名 Tsung-Ching Chen
學號 894360022
學位類別 博士
語文別 中文
口試日期 2010-06-17
論文頁數 157頁
口試委員 指導教授-何啟東
委員-孫一明
委員-莊清榮
委員-葉和明
委員-黃國楨
中文關鍵字 薄膜蒸餾  太陽能集熱器  透膜通量  效率提升 
英文關鍵字 membrane distillation  solar collector  transmembrane flux  efficiency improvement  temperature polarization 
學科別分類 學科別應用科學化學工程
學科別應用科學材料工程
中文摘要 太陽能輔助式薄膜蒸餾海水淡化系統是一套節能的系統,係將太陽能集熱設備與薄膜蒸餾系統作一結合,並利用源源不絕的太陽熱能作為薄膜分離驅動力的來源。太陽熱能應用於薄膜蒸餾系統有兩個方式,即(一)間接式加熱程序,其特點即是將太陽能透過集熱設備收集並加以儲存,再間接地提供予薄膜蒸餾單元利用;(二)直接式加熱程序:即將太陽能集熱設備與薄膜蒸餾設備結合,在平板式薄膜蒸餾設備中裝設一具有太陽輻射吸收功能之吸收板,可補充薄膜蒸餾程序中之熱量損失,提高純水產能,同時,對於節省設備空間有相當大的幫助。本研究針對太陽能輔助式薄膜蒸餾之主要設備進行效率改善研究,研究對象包括:(1)超薄通道式太陽能集熱器;(2)直接接觸式薄膜蒸餾系統;(3)雙膜型直接接觸式薄膜蒸餾系統;(4) 直接輔助式太陽能薄膜蒸餾系統。本研究的研究目的為:(1)設計超薄通道式太陽能集熱器,以提升傳統太陽能集熱器之集熱較率;(2)以二維數學模型針對不同薄膜蒸餾設備的熱量與質量傳送機制進行研究,並以實驗分析的方法驗證數學模式的正確性,探討設計參數及操作條件對於集熱器之集熱效率提升百分率和薄膜蒸餾系統之流體溫度分佈、溫度極化現象及純水透膜通量提升百分率進行研究。研究結果顯示,超薄通道式太陽能集熱器、直接接觸式薄膜蒸餾系統、雙膜型直接接觸式薄膜蒸餾系統及直接輔助式太陽能薄膜蒸餾系統之理論值與實驗值的平均相對誤差為1.33 %、5.98 %、5.86 %及4.84 %。本研究以開發低流體流速設備為主,除了可以降低操作成本外,經由新穎的改善策略可提升設備效能並得到令人滿意的熱量及質量傳送效率改善效果。
英文摘要 The solar heat assisted membrane seawater desalination system is technically and economically feasible, which is constructed of solar collectors and membrane distillation device for energy saving water purification. The diving force of separation in membrane distillation device is supplied by infinite resources of solar radiation. Solar desalination systems are classified into two categories, i.e. direct and indirect collector systems. There are some advantages for the direct indirect solar heat driven systems (1) the direct solar heat system integrates the solar absorber as an additional heat supply source and membrane distillation process into a small-scale unit which uses the solar radiation as the heat source to produce high purity water; (2) the hot brine is indirectly preheated by the solar heating system to prevent equipment fouling and the maintenance costs of solar collectors and hot water storages are low, respectively. The purposes of this study are (1) to study new design of ultra-thin channel solar water heater, direct contact membrane distillation, dual films membrane distillation, immediate solar assisted membrane distillation systems with mathematical modeling and experimental studies; (2) to develop a two-dimensional mathematical model and propose a general numerical method for solving this complex mathematical model in predicting pure water productivity of membrane distillation systems; (3) to study the collector efficiency improvement of solar collector and the effect of temperature distributions, temperature polarization and pure water productivity improvement on the membrane distillation systems. The results show that the agreement between the experimental results and theoretical prediction are fairly good.
論文目次 中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
圖目錄VI
表目錄IX
第一章 緒論1
1.1. 引言 1
1.2. 薄膜蒸餾系統簡介3
1.3. 研究動機與方向6
第二章 文獻回顧9
2.1. 太陽能集熱器9
2.2. 直接接觸式薄膜蒸餾11
2.3. 太陽能輔助式海水淡化系統14
第三章 理論分析17
3.1. 超薄通道式太陽能集熱器之一維理論數學模型建立17
3.2. 直接接觸式薄膜蒸餾之二維理論數學模型建立22
3.2.1. 直接接觸式薄膜蒸餾之質量與熱量傳送機制22
3.2.2. 直接接觸式薄膜蒸餾二維數學模型之建立34
3.2.3. 雙膜型直接接觸式薄膜蒸餾二維數學模型之建立39
3.2.4. 直接輔助式太陽能薄膜蒸餾設備二維數學模型之建立43
3.2.5. 朗吉庫塔數值解析方法47
3.3. 集熱器之集熱效率提升率及透膜通量提升率51
3.4. 數學模擬參數之設定54
第四章 實驗分析57
4.1. 超薄通道式太陽能集熱器57
4.2. 直接接觸式薄膜蒸餾系統62
4.3. 雙膜型直接接觸式薄膜蒸餾系統69
4.4. 直接輔助式太陽能薄膜蒸餾系統75
第五章 結果與討論82
5.1. 超薄通道式太陽能集熱器82
5.2. 直接接觸式薄膜蒸餾系統94
5.2.1. 操作參數對純水透膜通量之影響94
5.2.2. 溫度極化效應94
5.2.3. 水力損耗96
5.3. 雙膜型直接接觸式薄膜蒸餾系統107
5.3.1. 操作參數對純水透膜通量之影響107
5.3.2. 流體徑向溫度分佈108
5.4. 直接輔助式太陽能薄膜蒸餾系統112
5.4.1. 操作參數對純水透膜通量之影響112
5.4.2. 流體徑向溫度分佈113
5.4.3. 透膜通量提升百分比113
第六章 結論124
6.1. 超薄通道式太陽能集熱器125
6.2. 直接接觸式薄膜蒸餾系統125
6.3. 雙膜型直接接觸式薄膜蒸餾系統125
6.4. 直接輔助式太陽能薄膜蒸餾系統126
符號說明128
參考文獻134
附錄144
附錄A 中英文名詞對照表144
附錄B 個人學經歷與論文著述150

圖目錄
圖1-1 海水淡化成本3
圖1-2 薄膜蒸餾模組之型式5
圖1-3 薄膜蒸餾之薄膜形狀分類5
圖1-4 間接式太陽能輔助式薄膜蒸餾系統8
圖1-5 研究架構圖8
圖3-1 全通道式平板型太陽能集熱器系統示意圖17
圖3-2 薄膜蒸餾系統之速度及溫度邊界層示意圖23
圖3-3 薄膜蒸餾系統之熱量及質量傳送示意圖24
圖3-4 薄膜蒸餾系統之熱量傳送機制圖25
圖3-5 薄膜孔洞內質量傳送之阻力示意圖27
圖3-6 順流式平板型薄膜蒸餾示意圖35
圖3-7 雙膜型直接接觸式薄膜蒸餾示意圖40
圖3-8 直接輔助式太陽能薄膜蒸餾示意圖44
圖3-9 以朗吉庫塔法求解常微分聯立方程組之計算示意圖51
圖4-1 全通道式平板型太陽能集熱器實驗裝置簡圖57
圖4-2 全通道式平板型太陽能集熱器分解圖58
圖4-3 全通道式平板型太陽能集熱器實驗設備實際圖58
圖4-4 直接接觸式薄膜蒸餾實驗裝置簡圖62
圖4-5 直接接觸式薄膜蒸餾設備分解圖63
圖4-6 直接接觸式薄膜蒸餾薄膜支撐層示意圖63
圖4-7 直接接觸式薄膜蒸餾設備實際圖64
圖4-8 冷溶液儲槽65
圖4-9 雙膜型直接接觸式薄膜蒸餾實驗裝置簡圖69
圖4-10 雙膜型直接接觸式薄膜蒸餾設備分解圖70
圖4-11 雙膜型直接接觸式薄膜蒸餾薄膜支撐層示意圖70
圖4-12 雙膜型直接接觸式薄膜蒸餾設備實際圖71
圖4-13 直接輔助式太陽能薄膜蒸餾實驗裝置簡圖75
圖4-14 直接輔助式太陽能薄膜蒸餾設備分解圖76
圖4-15 直接輔助式太陽能薄膜蒸餾設備實際圖77
圖5.1-1 流體進口溫度和質量流率對集熱效率之影響,I0 = 700 W/m2 85
圖5.1-2 流體進口溫度和質量流率對集熱效率之影響,I0 = 1100 W/m2 86
圖5.1-3 不同操作參數下集熱效率之比較圖,m = 8.33×10-3 kg/s 87
圖5.2-1 熱側流體為純水時,不同操作參數對純水透膜通量之影響97
圖5.2-2 熱側流體為鹽水時,不同操作參數對純水透膜通量之影響98
圖5.2-3 通道壁及薄膜表面之流體溫度在不同操作參數下之影響,Ta,in = 35°C 99
圖5.2-4 通道壁及薄膜表面之流體溫度在不同操作參數下之影響,Ta,in = 40°C 100
圖5.2-5 流體流速及通道位置對流體溫度分佈之影響,Ta,in = 35 °C 101
圖5.2-6 流體流速及通道位置對流體溫度分佈之影響,Ta,in = 40 °C 102
圖5.2-7 流體流速及進口溫度對通道a流體之溫度極化效應的影響 103
圖5.2-8 流體流速及進口溫度對通道b流體之溫度極化效應的影響 104
圖5.3-1熱側流體為純水時,不同操作參數對純水透膜通量之影響 109
圖5.3-2 通道b流體流速及通道位置對流體溫度分佈之影響,Tb,in = 40 °C 110
圖5.4-1 熱側流體為鹽水時,不同操作參數對純水透膜通量之影響,I0 = 850 W/m2 115
圖5.4-2 熱側流體為鹽水時,不同操作參數對純水透膜通量之影響,I0 = 1100 W/m2 116
圖5.4-3 不同操作參數對通道a流體出口溫度之影響,I0 = 1100 W/m2 117
圖5.4-4 不同操作參數對通道b流體出口溫度之影響,I0 = 1100 W/m2 118
圖5.4-5流體流速及流體進口溫度對流體溫度分佈之影響,I0 = 1100 W/m2 119
圖5.4-6流體進口溫度、通道位置及太陽光入射強度對流體溫度分佈之影響,I0 = 1100 W/m2 120
圖5.4-7 流體進口溫度、通道位置及太陽光入射強度對區域純水透膜通量之影響,I0 = 1100 W/m2 121

表目錄
表1-1 不同型態之薄膜蒸餾系統應用領域6
表3-1 超薄通道式太陽能集熱器之數學模擬參數值54
表3-2 超薄通道式太陽能集熱器之物性參數式54
表3-3薄膜蒸餾系統之數學模擬參數值55
表3-4 薄膜蒸餾系統之物性參數式56
表4-1 PTFE/PP複合膜之薄膜性質67
表5.1-1 集熱器於不同操作條件下之玻璃面蓋、吸收板及流體平均溫度88
表5.1-2 集熱器於不同操作條件下之壓降89
表5.1-3 集熱器效率提升百分比與實驗誤差, m = 8.33×10-3 kg/s 90
表5.1-4 集熱器效率提升百分比與實驗誤差, m = 1.17×10-2 kg/s 91
表5.1-5 集熱器效率提升百分比與實驗誤差, m = 1.50×10-2 kg/s 92
表5.1-6 集熱器效率提升百分比與實驗誤差, m = 1.83×10-2 kg/s 93
表5.2-1 直接接觸式薄膜蒸餾實驗值與理論值之相對誤差比較表 105
表5.2-2 純水透膜潛熱與水力損耗 106
表5.3-1 透膜通量提升百分比與實驗值和理論值之相對誤差比較表 111
表5.4-1 直接輔助式太陽能薄膜蒸餾實驗值與理論值之相對誤差比較表 122
表5.4-2 直接輔助式太陽能薄膜蒸餾之透膜通量提升百分比 123
參考文獻 Abdel Dayem AM. “Experimental and numerical performance of a multi-effect condensation-evaporation solar water distillation system,” Energy, 31, 2710–2727 (2006).
Alklaibi AM, Lior N. “Membrane-distillation desalination: status and potential,” Desalination, 171, 111–131 (2005).
Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation,” J. Membr. Sci., 323, 85–98 (2008).
Banat F, Jwaied N. “Exergy analysis of desalination by solar-powered membrane distillation units,” Desalination, 230, 27–40 (2008).
Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. “Desalination by a "compact SMADES" autonomous solarpowered membrane distillation unit,” Desalination, 217, 29–37 (2007).
Bejan A. Convection Heat Transfer, 2nd ed., John Wiley & Sons, New York, USA (1994).
Bergene T, Løvvik OM. “Model calculations on a flat-plate solar heat collector with integrated solar cells,” Sol. Energy, 55, 453–462 (1995).
Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena, second ed., John Wiley & Sons, New York, 2007.
Bojic M, Kalogirous S, Petronijevic K. “Simulation of a solar domestic water heating system using a time marching model,” Renew. Energy, 27, 441–452 (2002).
Bui VA, Vu LTT, Nguyen MH. “Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules,” J. Membr. Sci., 353, 85–93 (2010).
Bonyadi S, Chung TS. “Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes,” J. Membr. Sci., 306, 134–146 (2007).
Calabro V, Drioli E, Matera F. “Membrane distillation in the textile wastewater treatment,” Desalination, 83, 209–224 (1991).
Calabro V, Jiao BL, Drioli E. “Theoretical and experimental study on membrane distillation in the concentration of orange juice,” Ind. Eng. Chem. Res., 33, 1803–1808 (1994).
Cartinella JL, Cath TY, Flynn MT, Miller GC, Hunter KW, Childress AE. “Removal of natural steroid hormones from wastewater using membrane contactor processes,” Environ. Sci. Technol., 40, 7381–7386 (2006).
Cath TY, Adams VD, Childress.E. “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement,” J. Membr. Sci., 228, 5–16 (2004).
Cath TY, Adams D, Childress AE. “Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater,” J. Membr. Sci., 257, 111–119 (2005).
Chanachai A, Meksup K, Jiraratananon R. “Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process,” Sep. Purif. Technol., 72, 217–224 (2010).
Chang SW, Su LM. “Heat transfer of reciprocating helical tube fitted with full circumferential ribs,” Int. J. Heat Mass Transf., 44, 3025–3042 (2001).
Chen TC, Ho CD, Yeh HM. “Theoretical modeling and experimental analysis of direct contact membrane distillation,” J. Mem. Sci., 330, 279–287 (2009).
Chen TC, Ho CD. “Immediate assisted solar direct contact membrane distillation in saline water desalination,” J. Membrane Sci., 358, 122–130 (2010).
Chenlo F, Moreira R, Pereira G, Ampudia A. “Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes,” J. Food Eng., 54, 347–352 (2002).
Chiou JP. “Experimental investigation of the augmentation of forced convection heat transfer in a circular tube using spiral spring inserts,” J. Heat Transf.-Trans. ASME, 109, 300–307 (1987).
Clifford KH, Stephen WW. Gas Transport in Porous Media. Springer, Netherlands, 2006.
Curcio E, Drioli E. “Membrane Distillation and related operations—a review,” Sep. Purif. Rev., 34, 35–86 (2005).
Datta R, Dechapanichkul S, Kim JS, Fang LY, Uehara H. “A generalized model for transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases,” J. Membr. Sci., 75, 245–263 (1992).
Dubey S, Tiwari GN. “Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater,” Sol. Energy, 82, 602–612 (2008).
Drioli E, Wu Y. “Membrane distillation : An experimental study,” Desalination, 53, 339–346 (1985).
Duffie JA, Beckman WA. Solar engineering of thermal processes. third ed., New York: John Wiley & Sons Inc., 2006.
El-Bourawi MS, Ding Z, Ma R, Khayet MA. “A framework for better understanding membrane distillation separation process,” J. Membr. Sci., 285, 4–29 (2006).
Fath HES. “Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment,” Desalination, 116, 45–56 (1998).
Fath HES, Elsherbiny SM, Hassan AA, Rommel M, Wieghaus M, Koschikowski J, Vatansever M. “PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs,” Desalination, 225, 58–69 (2008).
Felder RM, Rousseau RW. Elementary Principles of Chemical Processes, third ed., John Wiley & Sons, New York, 2000.
Fernández-Pineda C, Izquierdo-Gil MA, García-Payo MC. “Gas permeation and direct contact membrane distillation experiments and their analysis using different models,” J. Membr. Sci., 198, 33–49 (2002).
Findley ME. “Vaporization through porous membranes,” Ind. Eng. Chem. Process Des. Dev., 6, 226–230 (1967).
Gryta M, Tomaszewska M. “Heat transport in the membrane distillation process.,” J. Membr. Sci., 144, 211–222 (1998).
Gryta M, Tomaszewska M, Grzechulska J, Morawski AW. “Membrane distillation of NaCl solution containing natural organic matter,” J. Membr. Sci., 181, 279–287 (2001a).
Gryta M, Karakulski K, Morawski AW. “Purification of oily wastewater by hybrid UF/MD,” Water Res., 35, 3665–3669 (2001b).
Gryta M, Tomaszewska M, Morawski AW. “Membrane distillation with laminar flow,” Sep. Purif. Technol., 11, 93–101 (1997).
He F, Gilron J, Lee H, Song L, Sirkar KK. “Potential for scaling by sparingly soluble salts in crossflow DCMD,” J. Membr. Sci., 311, 68–80 (2008).
Ho CD, Chen TC. “The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle,” Renew. Energy, 31, 953–970 (2006).
Ho CD, Chen TC. “Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached,” Renew.Energy, 33, 655–664 (2008).
Ho CD, Yeh HM, Cheng TW, Chen TC, Wang RC. “The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached,” Appl. Energy, 86, 1470–1478 (2009).
Hobbi A, Siddiqui K. “Experimental study on the effect of heat transfer enhancement devices in flat-plate solar collectors,” Int. J. Heat Mass Transf., 52, 4650–4658 (2009).
Hobbi A, Siddiqui K. “Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS,” Sol. Energy, 83, 700–714 (2009).
Huang BJ, Lin TH, Hung WC, Sun FS. “Performance evaluation of solar photovoltaic/thermal systems,” Sol. Energy, 70, 443–448 (2001).
Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. fourth ed., New York: John Wiley & Sons Inc., 1996.
Iversen SB, Bhatia VK, Dam-Jphasen K, Jonsson G. “Characterization of microporous membranes for use in membrane contactors,” J. Membr. Sci., 130, 205–217 (1997).
Kalogirou SA. “Solar thermal collectors and applications,” Prog. Energy Combust. Sci., 30, 231–295 (2004).
Khayet M, Godino MP, Mengual JI. “Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method,” Desalination, 157, 297–305 (2003).
Khayet M, Mengual JI, Matsuura T. “Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation,” J. Membr. Sci., 252, 101–113 (2005).
Koschikowski J, Wieghaus M, Rommel M, Ortin VS, Suarez BP, Betancort Rodríguez JR. “Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas,” Desalination, 248, 125–131 (2009).
Kumar S, Tiwari GN. “Performance evaluation of an active solar distillation system,” Energy, 21, 805–808 (1996).
Kumar A, Prasad BN. “Investigation of twisted tape inserted solar water heaters - Heat transfer, friction factor and thermal performance results,” Renew. Energy, 19, 379–398 (2000).
Lawson KW, Lloyd DR. “Membrane distillation. II. Direct contact MD,” J. Membr. Sci., 120, 123–133 (1996).
Lawson KW, Lloyd DR. “Membrane distillation,” J. Membr. Sci., 124, 1–25 (1997).
Li B, Sirkar KK. “Novel membrane and device for direct contact membrane distillation-based desalination process,” Ind. Eng. Chem. Res., 43, 5300–5309 (2004).
Li ZF, Sumathy K. “Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank,” Sol. Energy, 71, 285–297 (2001).
Magalhães MCF, Königsberger E, May PM, Hefter G. “Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C,” J. Chem. Eng. Data, 47, 590–598 (2002).
Martínez-Díez L, Vázquez-González MI. “Effects of polarization on mass transport through hydrophobic porous membranes,” Ind. Eng. Chem. Res., 37, 4128–4135 (1998).
Matrawy KK, Farkas I. “Comparison study for three types of solar collectors for water heating,” Energy Conv. Manag., 38, 861–869 (1997).
Meindersma GW, Guijt CM, de Haan AB. “Desalination and water recycling by air gap membrane distillation,” Desalination, 187, 291–301 (2006).
Qiblawey HM, Banat F. “Solar thermal desalination technologies,” Desalination, 220, 633–644 (2008).
Onsekizoglu P, Savas Bahceci K, Acar J. “The use of factorial design for modeling membrane distillation,” J. Membr. Sci., 349, 225–230 (2010).
Ortiz JM, Exp´osito E, Gallud F, Garc´ıa-Garc´ıa V, Montiel V, Aldaz A. “Photovoltaic electrodialysis system for brackish water desalination: Modeling of global process,” J. Membr. Sci., 274, 138–149 (2006).
Ozbek H, Phillips SL. “Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C,” J. Chem. Eng. Data, 25, 263–267 (1980).
Patel NV, Philip SK. “Performance evaluation of three solar concentrating cookers,” Renew. Energy, 20, 347–355 (2000).
Peña L, Godino MP, Mmengual JI. “A method to evaluate the net membrane distillation coefficient,” J. Membr. Sci., 143, 219–233 (1998).
Phattaranawik J, Jiraratananon R, Fane AG. “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation,” J. Membr. Sci., 215, 75–85 (2003a).
Phattaranawik J, Jiraratananon R, Fane AG. “Heat transport and membrane distillation coefficients in direct contact membrane distillation,” J. Membr. Sci., 212, 177–193 (2003b).
Qtaishat M, Rana D, Khayet M, Matsuura T. “Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation,” J. Membr. Sci., 327, 264–273 (2009).
Rockendorf G, Sillmann R, Podlowski L, Litzenburger B. “PV-hybrid and thermoelectric collectors,” Sol. Energy, 67, 227–237 (1999).
Rommel M, Koschikowski J, Wieghaus M. “Solar driven desalination systems based on membrane distillation,” NATO Security through Science Series C: Environmental Security, 247–257 (2007).
Roonprasang N, Namprakai P, Pratinthong N. “Experimental studies of a new solar water heater system using a solar water pump,” Energy, 33, 639–646 (2008).
Saini RP, Saini JS. “Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element,” Int. J. Heat Mass Transf., 40, 973–986 (1997).
Schofield RW, Fane AG, Fell CJD. “Heat and mass transfer in membrane distillation,” J. Membr. Sci., 33, 299–313 (1987).
Schofield RW, Fane AG, Fell CJD. “Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition,” J. Membr. Sci., 53, 159–171 (1990a).
Schofield RW, Fane AG, Fell CJD. “Gas and vapour transport through microporous membranes. II. Membrane distillation,” J. Membr. Sci., 53, 173–185 (1990b).
Schofield RW, Fane AG, Fell CJD, Macoun R. “Factors affecting flux in membrane distillation,” Desalination, 77, 279–294 (1990c).
Schwinge J, Neal PR, Wiley DE, Fletcher DF, Fane AG. “Spiral wound modules and spacers: Review and analysis,” J. Membr. Sci., 242, 129–153 (2004).
Srisurichan S, Jiraratananon R, Fane AG. “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” J. Membr. Sci., 277, 186–194 (2006).
Thomson M, Miranda MS, Infield D. “A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range,” Desalination, 153, 229–236 (2002).
Tomaszewska M, Gryta M, Morawski AW. “Study on the concentration of acids by membrane distillation,” J. Membr. Sci., 102, 113–122 (1995).
Tomaszewska M, Gryta M, Morawski AW. “Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation,” J. Membr. Sci., 166, 149–157 (2000).
Voropoulos K, Mathioulakis E, Belessiotis V. “A hybrid solar desalination and water heating system,” Desalination, 164, 189–195 (2004).
Wang RZ. “Adsorption refrigeration research in Shanghai Jiao Tong University,” Renew. Sust. Energ. Rev., 5, 1–37 (2001).
Ward J. “A plastic solar water purifier with high output,” Sol. Energy, 75, 433–437 (2003).
Welty JR, Wick CE, Wilson RE. Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York, 1984.
Weyl PK. Recovery of demineralized water from saline waters, United States Patent 3,340,186 (1967).
Wilkes JO. Fluid Mechanics for Chemical Engineers, Prentice-Hall PTR, New Jersey, 1999.
Zhang Y, Faghri A. “Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube,” Int. J. Heat Mass Transf., 39, 3165–3173 (1996).
Zhongwei D, Liying L, Runyu M. “Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation,” J. Membr. Sci., 215, 11–23 (2003).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信