淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0207200900230000
中文論文名稱 Groebner基底與不變量
英文論文名稱 Groebner basis and invariants
校院名稱 淡江大學
系所名稱(中) 數學學系碩士班
系所名稱(英) Department of Mathematics
學年度 97
學期 2
出版年 98
研究生中文姓名 朱建帆
研究生英文姓名 Chien-Fan Chu
學號 696190221
學位類別 碩士
語文別 英文
第二語文別 中文
口試日期 2009-06-19
論文頁數 61頁
口試委員 指導教授-胡守仁
委員-朱樺
委員-陳燕美
中文關鍵字 一個理想上的Groebner基底  Buchberger的運算法  不變量環  Reynolds算子  Poincare級數  Hilbert-Serre定理  Molien定理  Hironaka分解 
英文關鍵字 Groebner basis for an ideal  Buchberger's algorithm  ring of invariant  Reynolds operator  Poincare series  Hilbert-Serre theorem  Molien theorem  Hironaka decomposition 
學科別分類 學科別自然科學數學
中文摘要 在這篇論文中,我們將會學習Groebner基底和不變量環的一些基本性質。我們將給予一些例題去說明如何利用Groebner基底來解聯立方程式,並將Groebner基底應用在理想元素的隸屬問題以及求兩個理想的交集。我們也將它使用在不變量環的一些性質,這些性質主要描述說當給定一個有限群後,它的不變量環生成元可利用 Groebner基底來求出關係。
這篇論文主要分成三節。第一節是探討有關Groebner基底的基本性質,並且討論當在解聯立方程式時所使用到的消去和擴展定理。第二節探討當給定任何一個有限群時我們如何創造出它的不變量環。在最後一節,我們將給一些可以使用不變量環的例子。第一個例子,我們探討一個立方體於對稱群的所有不變量。而第二個例子我們將會使用電腦來幫我們求出它的不變量環。這篇論文裡我們使用Maple來幫我們計算。
英文摘要 In this thesis, we shall study some basic properties of Groebner basis and ring of invariants. We shall give some examples to show the use of Groebner basis in solving polynomial equation, determining ideal memberships and intersection of ideals. We shall also discuss basic theories on ring of invariant. Some examples on the construction of generators for a ring of invariant of finite group will be given. Relations among the generators will be found by using Groebner basis.
This thesis is divided into three sections. Section 1 is about basic properties of Groebner basis, then talk about elimination and extension theorems which is used in solving
polynomial equation. Section 2 is about how to construct the ring of invariant when giving a finite group. In the last section, we shall give some examples on calculation of ring of invariant. In particular, we discuss the invariants of the symmetry group of a cube. We also
give an example to show how to compute explicitly ring of invariant of an abelian group. Groebner basis calculation is implemented in many computer algebra systems, such as Maple, MATHEMATICA, Cocoa etc. In this thesis, we use Maple to do our calculations.
論文目次 目錄
1 Groebner基底-----------------------------------------------------------------------------------------------2
1.1 Groebner基底的性質-------------------------------------------------------------------------------------2
1.2 消去以及擴展定理---------------------------------------------------------------------------------------6

2 不變量環---------------------------------------------------------------------------------------------------9
2.1 不變量環的性質-----------------------------------------------------------------------------------------9
2.2 構出不變量環的生成物-------------------------------------------------------------------------------13

3 一些不變量環的例子-------------------------------------------------------------------------------------18

Contents
1 Groebner Basis-------------------------------------------------------------------------------------------26
1.1 The properties of Groebner basis-----------------------------------------------------------------26
1.2 The elimination and extension theorem---------------------------------------------------------33

2 Ring of Invariant-----------------------------------------------------------------------------------------42
2.1 The properties of the ring of invariant-------------------------------------------------------------42
2.2 Constructing generators for the ring of invariant----------------------------------------------47

3 Some Example of the Ring of Invariant-------------------------------------------------------------53

References----------------------------------------------------------------------------------------------------61
參考文獻 [1] D.Cox, F.Little, D.O'shea, Ideal, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, 1992

[2] Mara D.Neusel, Invariant Theory,American Mathematical Society(AMS), 2006

[3] B.sturmfels, Algorithm in invariant Theory: Text and Monographs in symbolic computation, Springer-Verlag, 1993

[4] Thomas W, Hungerford, Algebra, Springer-Verlag, 1974

[5] W.Keith Nicholson, Introduction to abstract algebra, Wiley, 1999

[6] David S.Dummit, Richard M.Foote, Abstract algebra, Prentice-Hall, 1991

[7] Hideyuki Matsumura, Commutative ring theory,Cambridge University Press, 1986
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信