淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0207200717320600
中文論文名稱 含有不良品且需求率與售價有關的兩個倉庫存貨模型
英文論文名稱 The inventory models for two warehouses with defective items and price-dependent demand rate
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 95
學期 2
出版年 96
研究生中文姓名 賴秀琪
研究生英文姓名 Shiou-Chi Lai
學號 694560086
學位類別 碩士
語文別 中文
口試日期 2007-06-08
論文頁數 62頁
口試委員 指導教授-歐陽良裕
委員-和家慧
委員-時序時
中文關鍵字 存貨  不良品  需求率與售價有關  兩個倉庫  數量折扣  延遲付款 
英文關鍵字 Inventory  defective items  price-dependent demand rate  two warehouses  quantity discount  delay of payment 
學科別分類 學科別社會科學管理學
中文摘要 在許多企業的營運資金裡,存貨成本通常佔有相當大的比重,因此若能做好存貨管理,除了可以減輕企業資金的壓力,還能間接增加公司獲利能力。如何在低庫存管理成本、高服務品質與生產績效間尋求平衡點,一直是目前企業界所努力追求的目標。1915年Harris率先提出「經濟訂購量」(EOQ)公式,但其模型假設條件太多,導致實際運用時,受到很大的限制,因此陸續有許多學者針對不同的條件提出各種存貨模型。
傳統的EOQ模型假設企業擁有單一且無容量限制的倉庫,然而,在現實情況中,零售商的自有倉庫時常有固定的容量限制,當企業採購大量的物品時,受限於自有倉庫的容量,此時可能需要外租倉庫以存放額外的存貨。再者,傳統模型並沒有考量到進貨物品中含有瑕疵品的情況,由於機具設備老舊、原料品質良莠不齊而可能造成零售商的進貨物品中含有瑕疵品。另外,物品在市場上的需求並非是固定維持不變的,需求率可能與產品的價格存在著密切的關係,因此考慮物品的價格對市場需求率的影響將能使模型更加完整。
全文包含兩個存貨模型,第二章假設供應商為了吸引顧客增加訂購數量而提供數量折扣。第三章延續第二章的基本假設,將供應商吸引顧客多量訂購的策略修改為提供延遲付款的信用交易。兩個模型皆以使單位時間銷售總利潤最大為其目標,並各自發展出一個演算法以利求解。最後以數值範例說明求解過程並做敏感度分析,以暸解各參數值的變動對最適解的影響。第四章為結論,對本文各章所建構的存貨模型作一總結,同時提出未來的研究方向。
英文摘要 The inventory always have a higher proportion of the cost in a company, therefore having a good management of inventory control could make a higher profit. The goal of the company is to balance the low-inventory control cost, high quality service and production performance. In 1915, Harris developed an EOQ model with many assumptions, therefore it was difficult to be applied in the real world. However, many scholars modified its assumption according to different conditions.
Traditional EOQ model assumes retailers own a warehouse without capacity limitation. However, in the real world company has fixed capacity warehouse. Thus while the company has a large stock because of the large order, they need to rent another warehouse to hold excess stocks. Moreover, traditional EOQ model does not consider defective items, even poor-quality items do exist during production procedure. In addition, the demand rate does not always stay constantly, it would change with different price. Thus, considering price-dependent demand will make model more reasonable.
In this thesis two inventory models are formulated. In Chapter 2 we assume that supplier provide quantity discount for retailers, In Chapter 3 we extend the model in chapter 2 with supplier allows a specified credit period to the retailer for payment without penalty. The goal of two inventory models is to determine maximize the profit per unit time. For each inventory model, we establish algorithm to determine the optimal strategy and numerical examples are given to illustrate the solution procedure. Also, sensitivity analysis is conducted for the parameters of the models. Finally, Chapter 4 provides the conclusions of this thesis and some suggestion future research.
論文目次 目 錄
表目錄 III
圖目錄 IV
使用符號一覽表 V
基本假設 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 3
1.3 研究方法 8
1.4 研究架構 8
第二章 數量折扣,需求率與售價有關且進貨物品中含有不良品的兩倉庫存貨模型 10
2.1 前言 10
2.2 符號說明與假設 11
2.3 模型的建立與求解 12
2.4 數值範例 21
第三章 考慮延遲付款,需求率與售價有關且進貨物品中含有不良品的兩倉庫存貨模型 29
3.1 前言 29
3.2符號說明與假設 30
3.3 模型建立 31
3.4 模型求解 38
3.5 數值範例 45
第四章 結論及後續研究 56
4.1 結論 56
4.2 後續研究方向 57
參考文獻 59

表 目 錄

表2.1 不同訂購數量下的單位購買成本 21
表2.2 利用演算法的求解程序算出TEPU(Q*,S*) 22
表2.3 自有倉庫的最大容量w值變動下的最適解 23
表2.4 訂購成本k值變動下的最適解 24
表2.5 外租倉庫單位時間單位物品的儲存成本hR值變動下的最適解 24
表2.6 自有倉庫單位時間單位物品的儲存成本hw值變動下的最適解 25
表2.7 需求函數中參數值a值變動下的最適解 25
表2.8 需求函數中參數值b值變動下的最適解 26
表2.9 期望不良率Mp值變動下的最適解 26
表2.10 敏感度分析 28
表3.1 例題3.1的求解過程 46
表3.2 自有倉庫的最大容量w值變動下的最適解 47
表3.3 外租倉庫單位時間單位物品的儲存成本hR1值變動下的最適解 47
表3.4 自有倉庫單位時間單位物品的儲存成本hw1值變動下的最適解 48
表3.5 需求函數中參數值a值變動下的最適解 48
表3.6 需求函數中參數值b值變動下的最適解 49
表3.7 所賺利息的利率Ie值變動下的最適解 49
表3.8 所需支付利息的利率Ic值變動下的最適解 50
表3.9 延遲付款的信用交易期限M值變動下的最適解 50
表3.10 物品的單位購買價格c值變動下的最適解 51
表3.11 不良率p值變動下的最適解 52
表3.12 敏感度分析 54


圖 目 錄

圖2.1 外租倉庫及自有倉庫同時進行篩選的存貨系統 12
圖3.1 T≧M時之存貨系統 32
圖3.2 T≦M時之存貨系統 33


參考文獻 中文文獻

[1]賀照鈞,(2004),考慮不完美品質及在兩個倉庫容量限制下之經濟生產批量,國立台灣科技大學,工業管理研究所碩士論文。

英文文獻

[1]Abad, P. L. (1988). Determining optimal selling price and lot size when the supplier offers all-unit quantity discounts. Decision Sciences, 19, 622-634.

[2]Aggarwal, S. P., and Jaggi, C.K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 458-462.

[3]Benkherouf, L. (1997). A deterministic order level inventory model for deteriorating items with two storage facilities. International Journal of Production Economics, 48, 167-175.

[4]Bhunia, A. K., and Maiti, M. (1996). Two storage inventory model with quantity discount. Modelling, Measurement and Control D, 14(1-2), 16.

[5]Bhunia, A. K., and Maiti, M. (1998). A two warehous inventory model for deteriorating items with a linear trend in demand and shortages. Journal of Operation Research Society, 49, 287-92.

[6]Burwell, T. H., Dave, D. S., Fitzpatrick, K. E., and Roy, M. R. (1991). An inventory model with planned shortages and price dependent demand. Decision Sciences, 22, 1187-1191.

[7]Chung, K. J., Goyal, S.K., and Huang, Y.F. (2005). The optimal inventory policies under permissible delay in payments depending on the ordering quantity. International Journal of Production Economics, 95, 203-213.

[8]Chung, K. J., and Huang, Y.F. (2003). The optimal cycle time for EPQ inventory model under permissible delay in payments. International Journal of Production Economics, 84, 307-318.

[9]Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistic Quarterly, 24, 257-268.

[10]Eilon, S. and Mallaya, R.V., (1966). Issuing and pricing policy of semi-perishables. Proceedings of 4th International Conference on Operational Research.

[11]Goswami, A. and Chaudhuri, K.S., (1992). An economic order quantity model for items with two levels of storage for a linear trend in demand. Journal of the Operational Research Society, 43, 157-167.

[12]Goyal, S. K., (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36, 335-339.

[13]Haley, C. W. and Higgins, R. C., (1973). Inventory policy and trade credit financing. Management Science, 20, 464-471.

[14]Hadley, G. and Whitin, T. M. (1963). Analysis of Inventory System. New Jersey: Prentice-Hall, 169-175.

[15]Hartley, V. R., (1976). Operations Research-A Managerial Emphasis. Good Year Publishing Company, California, 12, 315-317.

[16]Jamal, A. M. M., Sarker, B. R., and Wang, S., (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.

[17]Jamal, A. M. M., Sarker, B. R. and Wang, S., (2000). Optimal payment time for a retailer under permitted delay of payment by the wholesaler. International Journal of Production Economics, 66, 59-66.

[18]Kar, S., Bhunia, A. K. and Maiti, M., (2001). Deterministic inventory model with two levels of storage, a linear trend in demand and a fixed time horizon. Computers and Operations Research, 28, 1315-1331.

[19]Li, J. and Liu, L., (2006). Supply chain coordination with quality discount policy. International Journal of Production Economics, 101, 89-98.

[20]Mandal, M. and Maiti, M., (1996). Inventory models for breakable items with quantity discount and stock-dependent demand. Modelling, Measurement and Control D, 14, 16.

[21]Ouyang, L. Y., Teng, J.T. and Chen, L.H., (2006). Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. Journal of Global Optimization, 34, 245-271.

[22]Pakkala, T. P. M. and Achary, K.K., (1992). Deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate. European Journal of Operational Research, 57, 71-76.

[23]Ray, J., Goswami, A. and Chaudhuri, K.S., (1998). On an inventory model with two levels of storage and stock-dependent demand rate. International Journal of Systems Science, 29, 249-254.

[24]Rezaei, J., (2005). Economic order quantity model with backorder for imperfect quality items. IEEE International Engineering Management Conference II, No.1559191, 466-470.

[25]Salameh, M. K. and Jaber, M. Y., (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64, 59-64.

[26]Sarma, K. V. S., (1983). A deterministic inventory model with two levels of storage and an optimum release rule. Opsearch, 20, 175-180.

[27]Sarma, K. V. S., (1987). Deterministic order-level inventory model for deteriorating items with two storage facilities. European Journal of Operational Research, 29, 70-73.

[28]Sharker, B. R., Jamal, A. M. M., and Wang, S., (2000). Supply chain models for perishable product under inflation and permissible delay in payment. Computers and Operations Research, 27, 59-75.

[29]Silver, E.A., Pyke, D. F. and Peterson, R. (1998). Inventory management and production planning and scheduling. John Wiley and Sons, New York, Third Ed., 150.

[30]Tersine, R. J. andToelle, R. A., (1985). Lot size determination with quantity discounts. Production and Management, 26, 1-23.

[31]Wee, H. M., (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering. International Journal of Production Economics, 59, 511-518.

[32]Wee, H. M., (2005). Two-warehouse Inventory models with partial
backordering and Weibull distribution deteriorating under inflation. Journal of Chinese Institute of Industrial Engineers, 22, 451-462.

[33]Yang, H. L., (2004). Two-warehouse Inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157, 344-356.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信