淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0207200709200200
中文論文名稱 微晶片電泳結合電化學偵測乙醯胺酚及其水解物對苯胺酚之研究
英文論文名稱 Determination of Acetaminophen and Its Hydrolytic Product p-Aminophenol with Microchip
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 95
學期 2
出版年 96
研究生中文姓名 蘇晟文
研究生英文姓名 Sheng-Wen Su
學號 694170043
學位類別 碩士
語文別 中文
口試日期 2007-06-05
論文頁數 99頁
口試委員 指導教授-林孟山
委員-施正雄
委員-傅明仁
委員-蔡東湖
中文關鍵字 微晶片  電化學偵測 
英文關鍵字 microchip  PDMS  electrochemical detection 
學科別分類 學科別自然科學化學
中文摘要 本研究主要於發展微晶片電泳與電化學偵測之結合,在微晶片的製作過程中,首先利用微積電製程技術於矽晶圓的表面製造出微流道的陽模,再使用poly(dimethylsiloxane) (PDMS)採用造模法的方式翻模製造出微流道,本法的優點有材料成本較低、製作過程簡便適合大量製造等。就電化學偵測而言,本系統利用網版印刷碳電極作為工作電極,並將此工作電極垂直置於微流道之末端以進行偵測分析物,具有可簡單且快速的更換工作電極之優點。
此系統透過於PDMS的製作過程中混入的cellulose acetate以改善分離acetaminophen與p-aminophenol的拖尾現象,而系統在最佳化的條件下,溶液組成20mM 2-(4-Morpholino)ethanesulfonic acid (MES)緩衝溶液pH5.5,內含1mM 氯化鈉,以偵測電位900mV(vs. Ag/AgCl)偵測自電泳分離的acetaminophen與p-aminophenol,偵測時工作電極與流道末端距離為60μm,分離的條件為樣品注入時間3秒,分離電壓2000V,分離時樣品槽與樣品廢液槽所施加的電壓控制在分離電壓80%的水準,所得之分析特性分別為:p-aminophenol的線性範圍從5μM到1.25mM(R=0.999),偵測靈敏度為0.32nA/μM,acetaminophen的線性範圍從10μM到1mM(R=0.995),偵測靈敏度為0.17nA/μM,重複17次實驗操作對200μM p-aminophenol與acetaminophen水溶液的偵測,所得之相對標準偏差分別為3.22%與3.62%。
英文摘要 This research demonstrates the feasibility of using microchip for acetaminophen and p-aminophenol with thick film printed electrochemical detector. First, we used the microelectromechanical systems (MEMS) technology to create a positive pattern on the silicon wafer, and then the poly(dimethylsiloxane) (PDMS) microchannel was formed by casting. The PDMS owns many advantages such as low cost, readily mechanical processing and mass replication. For electrochemical detector, the working electrode was fabricated by screen printed technology and subsequently the electrode was mounted perpendicularly to the outlet of microchannel. The advantage of the electrode is easy and
fast replacement.
The peak spreading of acetaminophen and p-aminophenol was improved by blending 0.2% cellulose acetate for the PDMS. Acetaminophen and p-aminophenol was measured by using amperometry at the optimum condition at buffer solution: 20mM 2-(4-Morpholino)ethanesulfonic acid (MES) buffer pH5.5 containing 1mM sodium chloride; detection potential: 900mV (vs. Ag/AgCl); the distance between the working electrode and microchannel outlet : 60μm; injection time: 3s; the hold voltage in sample and sample waste reservoir during separation: 80% of separation voltage; separation voltage: 2000V. According to optimum operation conditions, the linear ranges of acetaminophen and p-aminophenol are obtained between 10μM to 1mM(R=0.995) and 5μM to 1.25mM(R=0.999), respectively. The sensitivities are 0.17nA/μM for acetaminophen and 0.32nA/μM for p-aminophenol. The detection limits of acetaminophen and p-aminophenol are 3.5μM and 1.8μM(S/N=3), respectively. The relative standard deviation of seventeen repetitive detections are 3.62% for
acetaminophen and 3.22 for p-aminophenol.
論文目次 第一章 序論..............................................................................................1
1-1研究背景..............................................................................................1
1-2 毛細管電泳的原理.............................................................................2
1-2-1 電泳流.........................................................................................2
1-2-2 電滲透流.....................................................................................3
1-3 微晶片電泳的發展.............................................................................6
1-3-1 微流道種類與製作方式.............................................................7
1-3-1-1熱壓法........................................................................................9
1-3-1-2雷射燒除法……......................................................................11
1-3-1-3灌模法......................................................................................12
1-3-1-4造模法......................................................................................14
1-4 樣品注入之方式...............................................................................16
1-4-1漂浮注入法.................................................................................16
1-4-2閘閥注入法.................................................................................18
1-4-3 夾擠注入法...............................................................................19
1-5 微晶片之偵測方式...................................................................20
1-5-1 UV/Visible..................................................................................21
1-5-2螢光.............................................................................................22
1-5-3電化學法.....................................................................................23
1-6 acetaminophen與p-aminophenol的重要性......................................30
1-7研究目的........................................…................................................31

第二章 實驗部分....................................................................................33
2-1 儀器與設備.......................................................................................33
2-2藥品....................................................................................................34
2-3網印電極的製備................................................................................35
2-4微流道的製備....................................................................................35
2-4-1光罩之製作.................................................................................35
2-4-2負光阻陽模之製作.....................................................................35
2-4-3造模法(casting)製造PDMS微流道...........................................36
2-4-4系統裝置.....................................................................................37
2-5樣品的製備........................................................................................37
2-6實驗條件的設計................................................................................38
2-6-1緩衝溶液pH............................................................................38
2-6-2緩衝溶液的種類.....................................................................38
2-6-3緩衝溶液的濃度.....................................................................39
2-6-4偵測電位.................................................................................39
2-6-5微流道與偵測電極之距離.....................................................39
2-6-6毛細管電泳參數最佳化.........................................................39
2.7分析特性.............................................................................................40

第三章 結果與討論................................................................................41
3-1偵測系統之架設...............................................................................41
3-2偵測機制............................................................................................48
3-3 偵測條件最佳化探討.......................................................................52
3-3-1緩衝溶液pH的探討...............................................................52
3-3-2緩衝溶液種類的探討.............................................................56
3-3-3緩衝溶液濃度的探討.............................................................59
3-3-4偵測電位的探討.....................................................................62
3-3-5微流道與偵測電極之距離的探討.........................................64
3-3-6進樣時間的探討.....................................................................67
3-3-7分離電壓的探討.....................................................................68
3-4 分析特性...........................................................................................77
3-5 結論...................................................................................................82
參考資料..................................................................................................92







圖表目錄
圖3-1:以網印電極所得之典型循環伏安圖..........................................42
圖3-2:以計時電流法偵測10mM多巴胺之晶片電泳圖.......................43
圖3-3:以計時電流法偵測blank(a)、0.1(b)和0.3mM(c)多巴胺之晶片電泳圖......................................................................................................46
圖3-4:工作電極與流道末端距離對氧化電流訊號之影響..................46
圖3-5:固定spacer位置對氧化電流訊號之影響。.................................47
圖3-6:以網印電極所得之典型循環伏安圖..........................................49
圖3-7:(a)未修飾及(b)修飾0.2% cellulose acetate之PDMS對滯留時間影響之實際電流訊號..........................................................................51
圖3-8:溶液酸鹼值之探討......................................................................54
圖3-9:溶液酸鹼值改變下之實際電流響應訊號..................................55
圖3-10:緩衝溶液種類探討....................................................................57
圖3-11:緩衝溶液類別探討之實際電流響應訊號................................58
圖3-12:緩衝溶液濃度的探討................................................................60
圖3-13:MES緩衝溶液於不同溶液濃度下之實際電流響應訊號........61
圖3-14:偵測電位的探討........................................................................63
圖3-15:微流道末端與偵測電極之距離探討........................................65
圖3-16:微流道末端與偵測電極距離不同下之實際電流響應訊號....66
圖3-17:進樣時間的探討........................................................................69
圖3-18:不同進樣時間下之實際電流響應訊號....................................70
圖3-19:探討分離時樣品槽及樣品廢液槽中控制的電壓大小............72
圖3-20:分離時樣品槽及樣品廢液槽中控制電壓改變時的實際電流響應訊號......................................................................................................73
圖3-21:分離電壓的探討........................................................................75
圖3-22:不同分離電壓下之實際電流響應訊號....................................76
圖3-23:網印碳電極偵測acetaminophen與p-aminophenol之校正曲線與實際電流響應訊號..........................................................................78
圖3-24:偵測acetaminophen與p-aminophenol之穩定性......................79
圖3-25:acetaminophen水溶液之半衰期探討........................................80
圖3-26:acetaminophen水溶液之Arrhenius圖.......................................81
表(一) :偵測系統之最佳化條件與分析特性.......................................83

參考文獻 A. Manz, N. Graber, H. M. Widmer, Miniaturized total chemical analysis systems:A novel concept for chemical sensing, Sens Actuators B Chem 1 (1990) 244-248
D. D. Cunningham, Fluidics and sample handling in clinical chemical analysis, Anal. Chim. Acta 429 (2001) 1–18
S. R. Wallenborg, C. G. Bailey, Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence Anal. Chem. 72 (2000) 1872-1878
J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. Chem. 71 (1999) 5436-5440
M. Hashimoto, M. L. Hupert, M. C.Murphy, S. A.Soper, Y.-W.Cheng, F. Barany, Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations, Anal. Chem. 77 (2005) 3243-3255
G. H.W. Sanders, A. Manz, Chip-based microsystems for genomic and proteomic analysis. Trends Analyt Chem 19 (2000) 364-378
J. H. Kim, C. J. Kang, D. Jeon, Y. S. Kim, A disposable capillary electrophoresis microchip with an indium tin oxide decoupler/amperometric detector, Microelectron. Eng. 78–79 (2005) 563–570
Y. Du, J. Yan, W. Zhou, X. Yang, E. Wang, Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips, Electrophoresis 25 (2004) 3853–3859
H. Nakanishi, T. Nishimoto, A. Arai, H. Abe, M. Kanai, Y. Fujiyama, T. Yoshida, Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems, electrophoresis 22 (2001) 230-234
Q. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, B. L. Karger, Multichannel microchip electrospray Mass spectrometry, Anal. Chem. 69 (1997) 426-430
D.N. Heiger, High Performance Capillary Electrophoresis – An Introduction, 2th ed.; Hewlett-Packard Company; 1992
B. Ma, X. Zhou, G.Wang, H. Huang, Z. Dai, J. Qin, B. Lin, Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids, Electrophoresis 27 (2006) 4904–4909
V. Dolník, S. Liu, S. Jovanovich, Capillary electrophoresis on microchip, Electrophoresis 21 (2000) 41-54
A. Srinivasan, X. Wu, M. Y. Lee, J. S. Dordick, Microfluidic peroxidase biochip for polyphenol synthesis, Biotechnol. bioeng. 81 (2003) 563-569
A, P. Dahlin, S, K. Bergstro1m, P, E. Andre´n, K, E. Markides, J. Bergquist, Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip, Anal. Chem. 77 (2005) 5356-5363
D. Shin, B. V. Sarada, D.A. Tryk, Akira Fujishima, J. Wang, Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis, Anal. Chem. 75 (2003) 530-534
Susan L. R. Barker,Michael J. Tarlov, Heather Canavan, James J. Hickman, Laurie E. Locascio, Plastic microfluidic devices modified with polyelectrolyte multilayers, Anal. Chem. 72 (2000) 4899-4903
H. Becker, C. Gartner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21 (2000) 12-26
H. Becker, L. E. Locascio, Polymer microfluidic devices, Talanta 56 (2002) 267–287
M. Johirul, A. Shiddiky, R. Kim, Y. Shim, Microchip capillary electrophoresis with a cellulose-DNA-modified screen-printed electrode for the analysis of neurotransmitters, Electrophoresis. 26 (2005) 3043 - 3052
R. Mazurczyka, J. Vieillarda, A. Bouchardb, B. Hannesa, S. Krawczyka, A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice, Sens Actuators B Chem 118 (2006) , 11-19
F. Kitakawa, S. Aizawa, K. Otsuka, Rapid enantioseparation of 1-aminoindan by microchip electrophoresis with linear-imaging UV detection, Anal. Sci. 21 (2005), 61-65
B. A. Peeni, D. B. Conkey, J. P. Barber, R. T. Kelly, M. L. Lee, A. T. Woolley, A. R. Hawkins, Planar thin film device for capillary electrophoresis, Lab Chip, 5 (2005) 501 – 505
H. Shadpour, S. A. Soper, Two-dimensional electrophoretic separation of proteins using poly(methyl methacrylate) microchips, Anal. Chem. 2006 (78) 3519-3527
M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem. 69 (1997) 2035-2042
C. H. Chiou, G. B. Lee, H. T. Hsu, P. W. Chen, P. C. Liao, Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques, Sens Actuators B Chem 86 (2002) 280-286
L. Martynoua, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, Fabrication of plastic microfluid channels by imprinting methods, Anal. Chem. 69 (1997) 4783-4789
J. Rossier, F. Reymond, P. E. Michel, Polymer microfluidic chips for electrochemical and biochemical analyses, Electrophoresis 23 (2002) 858–867
M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem. 69 (1997) 2035-2042
M. Maminski, M. Olejniczak, M. Chudy, A.Dybko, Z. Brzozka, Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology, Anal.Chim. Acta. 540 (2005) 153-157
R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, H. H. Hooper, Microchannel electrophoretic separations of DNA in injection-molded plastic substrates, Anal. Chem. 69 (1997) 2626-2630
A. Muck, Jr., J. Wnag, M. Jacobs, G. Chen, M. P. Chatrathi, V. Jurka, Z. Vyborny, S. D. Spillman, G. Sridharan, M. J. Schoning, Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding, Anal. Chem. 76 (2004) 2290
T. Fujii, PDMS-based microfluidic devices for biomedical applications, Microelectron. Eng. 61 –62 (2002) 907–914
J. M. K. Ng, I. Gitlin, A. D. Stroock, G. M. Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems Electrophoresis 23 (2002) 3461–3473
J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21 (2000) 27-40
W. Satoh, H. Hosono, H .Suzuki, On-Chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions, Anal. Chem. 77 (2005) 6857-6863
G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D. J. Harrison, Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices, Electrophoresis 21 (2000) 107–115
X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane), J. Chromatogr. B 762 (2001) 117–125
A. J. Wang, J. J. Xu, Q. Zhang, H. Y. Chen, The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis, Talanta 69 (2006) 210–215
Y. Liu, J.C. Fanguy, J.M. Bledsoe, C.S. Henry, Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips, Anal. Chem. 72 (2000) 5939–5944.
V. Linder, E. Verpoorte, W. Thormann, N.F. de Rooij, H. Sigrist, Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection, Anal. Chem. 73 (2001) 4181–4189.
Y. Berdichevsky, J. Khandurina, A. Guttman, Y.-H. Lo, UV/ozone modification of poly(dimethylsiloxane) microfluidic channels, Sensors and Actuators B 97 (2004) 402–408
J. H. Kim, C. J. Kang, Y. S. Kim, Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection, Biosens. Bioelectron. 20 (2005) 2314-2317
Y. Luo, B. Huang, H. Wu, R. N. Zare, Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives, Anal. Chem. 78 (2006) 4588-4592
H. Qiu, J. Yan, X. Sun, J. Liu, W. Cao, X. Yang, E. Wang, Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector, Anal. Chem. 75 (2003) 5435-5440
R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat, Anal. Chem. 74 (2002) 1136-1143
J. Wang, G. Chen, M. P. Chatrathi, A. Fujishima, D. A. Tryk, D. Shin, Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector, Anal. Chem. 75 (2003) 935-939
J. Wang, B. Tian, E. Sahlin, Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes, Anal. Chem. 71 (1999) 3901-3904
S. V. Ermakov, S. C. Jacobson, J. M. Ramsey, Computer simulations of electrokinetic injection techniques in microfluidic devices, Anal. Chem. 72 (2000) 3512-3517
S. C. Jacobson, R.Hergenruder, A. W. Moore, Jr., J. M.Ramsey, Precolumn reactions with electrophoretic analysis integrated on a microchip, Anal. Chem. 66 (1994) 4127-4132
S. C. Jacobson, L. B. Koutny, R. Hergenroeder, A. W. Moore, J. M. Ramsey, Microchip capillary electrophoresis with an integrated postcolumn reactor, Anal. Chem. 66 (1994) 3472-3476
M. L. Kovarik, M. W. Li, R. S. Martin, Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/electrochemistry, Electrophoresis 26 (2005) 202–210
L. L. S. Lockyear, C. L. Colyer, Z. H. Fan, K.I. Roy, D. J. Harrison, Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices, Electrophoresis 20 (1999) 529-538
A. J. Gawron, R. S. Martin, S. M. Loute, Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips, Electrophoresis 22 (2001) 242-248
Y. Liu, J. A. Vickers, C. S. Henry, Simple and sensitive electrode design for microchip electrophoresis/electrochemistry, Anal. Chem. 76 (2004) 1513-1517
C. D. Garcı´a, C. S. Henry, Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection, Anal. Chem. 75 (2003) 4778-4783
N. P. Beard, C. X. Zhang, A. J. deMello, In-column field-amplified sample stacking of biogenic amines on microfabricated electrophoresis devices, Electrophoresis 24 (2003) 732–739
M.Gong, K. R. Wehmeyer, P. A. Limbach, F. Arias, W. R. Heineman, On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis, Anal. Chem. 78 (2006) 3730-3737
R. Qurishi, M. Kaulich, C. E. Müller, Fast, efficient capillary electrophoresis method for measuring nucleotide degradation and metabolism, J. Chromatogr. A 952 (2002) 275–281
C. T. Culbertson, J. W. Jorgenson, Lowering the UV absorbance detection limit in capillary zone electrophoresis using a single linear photodiode array detector, Anal. Chem. 70 (1998) 2629-2638
V. Poinsot, M. Lacroix, D. Maury, G. Chataigne, B. Feurer, F. Couderc, Recent advances in amino acid analysis by capillary electrophoresis, Electrophoresis 27 (2006) 176–194
M. Lacroix, V. Poinsot, C. Fournier, F. Couderc, Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis, Electrophoresis 26 (2005) 2608–2621
Y. W. Lin, T. C. Chiu, H. T. Chang, Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis, J. Chromatogr. B 793 (2003) 37–48
G. Ping, B. Zhu, M. Jabasini, F. Xu, H. Oka, H. Sugihara, Y. Baba, Analysis of lipoproteins by microchip electrophoresis with high speed and high reproducibility, Anal. Chem. 77 (2005) 7282-7287
P. Schulze, M. Ludwig, F. Kohler, D. Belder, Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis, Anal. Chem. 77 (2005), 1325-1329
J. Wang, M. Pumera, Dual conductivity/amperometric detection system for microchip capillary electrophoresis, Anal. Chem. 74 (2002) 5919-5923
C. Y. Lee, C. M. Chen, G. L. Chang, C. H. Lin, L. M. Fu, Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector - CE microchips, Electrophoresis 27 (2006) 5043–5050
M. Pumera, J. Wang, F. Opekar, Ivan Jelı´nek, J. Feldman, H. Lowe, S. Hardt, Contactless conductivity detector for microchip capillary electrophoresis, Anal. Chem. 74 (2002) 1968-1971
L. C. Mecker, R. S. Martin, Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis, Electrophoresis 27 (2006) 5032–5042
D. C. Chen, F. L. Hsu, D. Z. Zhan, C. H. Chen, Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem. 73 (2001) 758-762
Y. Zeng, H. Chen, D.W. Pang, Z. L. Wang, J. K. Cheng, Microchip capillary electrophoresis with electrochemical detection, Anal. Chem. 74 (2002) 2441-2445
W. R. Vandaveer IV, S. A. P. Farmer, D. J. Fischer, C. N. Frankenfeld, S. M. Lunte, Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis 25 (2004) 3528–3549
R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-channel electrochemical detection for microchip capillary electrophoresis Using an electrically isolated potentiostat, Anal. Chem 74 (2002) 1136-1143
F. Bianchi, H. J. Lee , H. H. Girault, Ionode detection and capillary electrophoresis integrated on a polymer micro-chip,J. Electroanal. Chem. 523 (2002) 40–48
M. Galloway, W. Stryjewski, A. Henry, S. M. Ford, S. Llopis, R. L. McCarley, S. A.Soper, Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic Molecules, Anal. Chem. 74 (2002) 2407-2415
J. Wang, M. Pumera, G. Collins, F. Opekar, I. Jelínek, A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components, Analyst 127 (2002) 719–723
I. Yi , J. Kim, C. J. Kang, Y. J. Choi, K. Lee, Y. Kim, A novel electrochemical detector using prussian blue modified indium tin oxide electrode, Jpn. j. appl. phys. 45 (2006) 438-441
Y. Zeng, H. Chen, D. W. Pang, Z. L. Wang, J. K. Cheng, Microchip capillary electrophoresis with electrochemical detection, Anal. Chem. 74 (2002) 2441-2445
J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. Chem. 71 (1999) 5436-5440
N. Bao, J. J. Xu, Y. H. Dou, Y. Cai, H. Y. Chen, X. H. Xia, Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor, J. Chromatography A. 1041 (2004) 245-248
Yongsheng Ding, Carlos D. Garcia, Application of microchip-CE electrophoresis to follow the degradation of phenolic acids by aquatic plants, Electrophoresis 27 (2006) 5119–5127
R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat, Anal. Chem. 74 (2002) 1136-1143
C. C. Wu, R. G. Wu,J. G. Huang,Y. C. Lin, H. C. Chang, Three- electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem. 75 (2003) 947-952
J. J. Xu, Y. Peng, N. Bao, X. H. Xia, H. Y. Chen, Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis, Anal. Chem. 76 (2004) 6902-6907
G. Burgot, F. Auffret, J. L. Burgot, Determination of acetaminophen by thermometric titrimetry, Anal. Chim. Acta 343 (1997) 125-l 28
E. Dinc, A comparative study of the ratio spectra derivative spectrophotometry, Vierordt’s method and high-performance liquid chromatography applied to the simultaneous analysis of caffeine and paracetamol in tablets, J. Pharm. Biomed. Anal. 21 (1999) 723–730
L.A. Shervington and N. Sakhnini, A quantitative and qualitative high performance liquid chromatographic determination of acetaminophen and five of its para-substituted derivatives, J. Pharm. Biomed. Anal. 24 (2000) 43–49
F.A. Mohamed, M.A. AbdAllah S.M. Shammat, Selective spectrophotometric determination of p-aminophenol and acetaminophen, Talanta 44 (1997) 61–68
D. J. Miner, J. R. Rice, R. M. Riggin, and P. T. Kissinger, Anal. Chem. 53 (1981) 2258-2263
M. L. Ramos, J. F. Tyson, D. J. Curran, Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry, Anal. Chim. Acta 364 (1998) 107-116
F. Bohnenstengel, H.K. Kroemer, B. Sperker, In vitro cleavage of paracetamol glucuronide by human liver and kidney β-glucuronidase: determination of paracetamol by capillary electrophoresis J. Chromatogr. B Biomed. Sci. Appl. 721 (1999), pp. 295–299
J. Wang, M.P. Chatrathi, B. Tian, R. Polsky, Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen, Anal. Chem. 72 (2000) 2514-2518
A. Yesilada, H. Erdogen, M. Ertan, Second Derivative Spectrophotometric Determination of p-Aminophenol in the Presence of Paracetamol, Anal. Lett. 24 (1991) 129-138
R. Sandulescu, S. Mirel, R. Oprean, The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms, J. Pharm. Biomed. Anal. 23 (2000) 77–87
D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of instrumental analysis, fifth edition, p688
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信