淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0206201615531800
中文論文名稱 以PEUF程序及PEUF結合化學還原程序去除銅對於薄膜阻塞現象之研究
英文論文名稱 Comparison of membrane fouling for PEUF process and the process combining PEUF and chemical reduction for copper removal
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 張浩禎
研究生英文姓名 Hao-Chen Chang
學號 604480037
學位類別 碩士
語文別 英文
口試日期 2016-07-13
論文頁數 50頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-彭晴玉
中文關鍵字 聚乙烯亞胺  臨界通量  薄膜阻塞 
英文關鍵字 Polyethylenimine (PEI)  Critical flux  Membrane fouling 
學科別分類 學科別應用科學環境工程
中文摘要 聚電解質加強過濾程序(PEUF)在長時間的操作下,薄膜表面會因為聚電解質累積而造成阻塞。現有的文獻證實在PEUF掃流系統中加入固體顆粒,可以有效的改善薄膜阻塞問題,所以本文章將PEUF結合由化學還原程序所產生之銅顆粒,探討此方法是否可以降低薄膜阻塞之影響,因此本實驗之薄膜掃流系統分為兩個部分:PEUF及PEUF結合化學還原程序產生之銅顆粒。本研究以臨界通量(critical flux)比較在不同的過濾程序中,薄膜阻塞的程度。臨界通量之定義為薄膜在未發生阻塞的條件下,所能操作的最大通量。本實驗使用之聚電解質聚及還原劑分別為乙烯亞胺(PEI)及連二亞硫酸鈉(sodium dithionite)。實驗系統利用bleeding pump將系統內之含銅廢水抽出,使PEI在長時間操作下達到穩定的濃度,此時的濃度稱為最終PEI濃度(ultimate PEI concentration),簡稱uPEI。
結果顯示PEUF臨界通量隨著uPEI濃度增加而減少, 所以uPEI濃度會影響薄膜之廢水處理量。此外在PEUF系統中,可操作的PEI最高濃度為35 mmol/L,若超過此濃度會導致薄膜系統不會有通量產生。而在PEUF結合化學還原程序中,於相同uPEI濃度下,其臨界通量比單獨PEUF程序測得的值還低,顯示此時薄膜表面產生嚴重的阻塞。此阻塞是由化學還原所產生的銅顆粒沉積於薄膜表面所造成,其原因可能為薄膜表面及銅顆粒間之不同表面電荷所產生之吸引力所致。為了減少銅顆粒沉積於薄膜表面,PEUF結合化學還原程序中加裝沉澱槽,用來蒐集較大的銅顆粒。然而在相同條件下,臨界通量仍小於PEUF程序。為了減少薄膜系統中的顆粒量,建議之後的研究中,將還原程序移至沉澱槽中,使銅顆粒於槽中還原並沉澱,探討銅顆粒對於薄膜阻塞之影響。
英文摘要 In polyelectrolytes enhanced ultrafiltration (PEUF) process, the membrane is easily fouled by accumulation of polyelectrolytes on membrane surface during a long time operation. According to previous research, silica particles was added to mitigate membrane fouling in cross-flow filtration. In this study, copper particle produced by chemical reduction is investigated for mitigation of membrane fouling. The objective of this study is comparison of membrane fouling for PEUF system with or without incorporation of chemical reduction is investigated.
Critical flux, i.e., membrane can be operated without fouling for maximum membrane flux, was used to evaluate membrane fouling. The ultimate PEI concentration (uPEI), i.e., stable PEI concentration during a long time operation, was controlled by bleeding pump. Polyethylenimine (PEI) and dithionite were used as polyelectrolyte and reductant, respectively. Cu(II): PEI: dithionite molar ratio of 1:1.5:3 was fixed.
For PEUF system, results showed that critical flux decreases with increasing uPEI concentration, and the highest PEI concentration of 35 mmol/L can be operated for PEUF. For integration of PEUF and chemical reduction, the critical flux was lower than that for PEUF without incorporation of chemical reduction, showing severe membrane fouling. The membrane fouling might be due to the generation of attraction force between membrane surface and copper particles causing copper particle deposition on membrane surface.
To eliminate copper particle deposition on membrane surface, sediment tank was used to collect big particle produced by PEUF incorporation of chemical reduction. However, the critical flux was still lower than PEUF without chemical reduction at the same condition. To minimize the amount of particles in the membrane system, system with copper particles produced and collected in sediment tank is investigated for the influence of membrane fouling for future experiment.
論文目次 Catalog I
List of Figure III
List of Table V
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Membrane systems for heavy metal removal from wastewater 3
2.2 Cu(II) removal by PEUF with PEI 5
2.3 Recovery of metal ions and regeneration of polyelectrolytes from PEUF retentate 6
2.4 Membrane fouling 8
2.4.1 The concept of critical flux for membrane fouling 10
2.4.2 Cleaning and mitigation of membrane fouling 11
Chapter 3 Material and Methods 13
3.1 Experimental setup 13
3.2 Experimental methods 24
3.2.1 Membrane cleaning 24
3.2.2 Determination of pure water permeability, membrane resistance and membrane fouling resistance 24
3.3 Analytical methods 26
Chapter 4 Results and discussion 28
4.1 Comparison of membrane fouling for PEUF with and without integration of chemical reduction 28
4.2 The effect of sediment tank for PEUF with integration of chemical reduction 40
Chapter 5 Conclusion and suggestions 46
5.1 Conclusion 46
5.1.1 PEUF system with bleeding (system A) 46
5.1.2 Integration of PEUF with chemical reduction 46
5.2 Suggestion 47
Reference 48

List of Figure
Figure 1. Schematic comparison of selected separation process [6]. 3
Figure 2. The schematic of SDS micelle-metal ion removal by MEUF [10]. 4
Figure 3. Polyethylenimine (PEI) structure of (a) branch and (b) linear. The linear formula is (CH2CH2NH)n (Sigma-Aldrich) [18]. 5
Figure 4. Membrane fouling mechanisms [22]. 9
Figure 5. Pressure steps used for determination of critical flux [24]. 10
Figure 6. Forms of critical flux for fouling behaviors [26]. 11
Figure 7. The cross flow filtration setup denoted as system A. 14
Figure 8. The schematic of mass balance for UF process with bleeding. 14
Figure 9. Accumulated PEI concentration as a function of operation time based on Eq. (7). Feed PEI concentration of 4.7 mmol/L and feeding flow rate of 5.3 ml/min (membrane flux of 4 L/m2h), corresponding to
參考文獻 [1] R. Camarillo, Á. Pérez, P. Cañizares, A. de Lucas, Removal of heavy metal ions by polymer enhanced ultrafiltration: Batch process modeling and thermodynamics of complexation reactions, Desalination, 286 (2012) 193-199.
[2] S.H. Maruf, A.R. Greenberg, J. Pellegrino, Y. Ding, Critical flux of surface-patterned ultrafiltration membranes during cross-flow filtration of colloidal particles, J. Membr. Sci., 471 (2014) 65-71.
[3] J.-H. Yu, Y.-H. Chou, Y.-M. Liang, C.-W. Li, Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery, Water Sci. Technol., (2015).
[4] Y.-H. Chou, J.-H. Yu, Y.-M. Liang, P.-J. Wang, C.-W. Li, S.-S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite, Chemosphere, 141 (2015) 183-188.
[5] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92 (2011) 407-418.
[6] M.L. Davis, Water and wastewater engineering, McGraw-Hill, 2011.
[7] C.-K. Liu, C.-W. Li, Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar-enhanced ultrafiltration process, Desalination, 169 (2004) 185-192.
[8] Y.-Y. Fang, G.-M. Zeng, J.-H. Huang, J.-X. Liu, X.-M. Xu, K. Xu, Y.-H. Qu, Micellar-enhanced ultrafiltration of cadmium ions with anionic–nonionic surfactants, J. Membr. Sci., 320 (2008) 514-519.
[9] C.-W. Li, C.-K. Liu, W.-S. Yen, Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions, Chemosphere, 63 (2006) 353-358.
[10] J.-H. Huang, S.-H. Guo, G.-M. Zeng, Y.-L. Xiong, D.-M. Zhang, X.-J. Tang, G.-X. Xie, Prediction of fouling resistance and permeate flux in cross-flow micellar-enhanced ultrafiltration (MEUF), Colloids Surf., A, 401 (2012) 81-89.
[11] R.-S. Juang, M.-N. Chen, Retention of copper(II)—EDTA chelates from dilute aqueous solutions by a polyelectrolyte-enhanced ultrafiltration process, J. Membr. Sci., 119 (1996) 25-37.
[12] B.L. Rivas, S.A. Pooley, E.D. Pereira, R. Cid, M. Luna, M.A. Jara, K.E. Geckeler, Water-soluble amine and imine polymers with the ability to bind metal ions in conjunction with membrane filtration, J. Appl. Polym. Sci., 96 (2005) 222-231.
[13] R.S. Juang, M.N. Chen, Removal of Copper(II) Chelates of EDTA and NTA from Dilute Aqueous Solutions by Membrane Filtration, Ind. Eng. Chem. Res., 36 (1997) 179-186.
[14] R.-S. Juang, C.-H. Chiou, Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers, J. Membr. Sci., 177 (2000) 207-214.
[15] C.-W. Li, C.-H. Cheng, K.-H. Choo, W.-S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): Effects of organic ligands and solution pH, Chemosphere, 72 (2008) 630-635.
[16] R. Molinari, T. Poerio, P. Argurio, Chemical and operational aspects in running the polymer assisted ultrafiltration for separation of copper(II)–citrate complexes from aqueous media, J. Membr. Sci., 295 (2007) 139-147.
[17] B. Chaufer, A. Deratani, Removal of metal ions by complexation-ultrafiltration using water-soluble macromolecules: Perspective of application to wastewater treatment, Nucl. Chem. Waste Manage., 8 (1988) 175-187.
[18] D. Zamariotto, B. Lakard, P. Fievet, N. Fatin-Rouge, Retention of Cu(II)– and Ni(II)–polyaminocarboxylate complexes by ultrafiltration assisted with polyamines, Desalination, 258 (2010) 87-92.
[19] R. Molinari, P. Argurio, T. Poerio, Comparison of polyethylenimine, polyacrylic acid and poly(dimethylamine-co-epichlorohydrin-co-ethylenediamme) in Cu2+ removal from wastewaters by polymer-assisted ultrafiltration, Desalination, 162 (2004) 217-228.
[20] D. Jellouli Ennigrou, L. Gzara, M. Ramzi Ben Romdhane, M. Dhahbi, Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration, Desalination, 246 (2009) 363-369.
[21] J. Llanos, Á. Pérez, M.A. Rodrigo, P. Cañizares, Electrochemical regeneration of partially ethoxylated polyethylenimine used in the polymer-supported ultrafiltration of copper, J. Hazard. Mater., 168 (2009) 25-30.
[22] B. Tansel, W.Y. Bao, I.N. Tansel, Characterization of fouling kinetics in ultrafiltration systems by resistances in series model, Desalination, 129 (2000) 7-14.
[23] K. Kimura, Y. Hane, Y. Watanabe, G. Amy, N. Ohkuma, Irreversible membrane fouling during ultrafiltration of surface water, Water Res., 38 (2004) 3431-3441.
[24] I.-S. Chang, P.L. Clech, B. Jefferson, S. Judd4, Membrane Fouling in Membrane Bioreactors for Wastewater Treatment, J. Environ. Eng., 128 (2002) 1018-1029.
[25] Y. Huang, J. Du, Y. Zhang, D. Lawless, X. Feng, Batch process of polymer-enhanced ultrafiltration to recover mercury (II) from wastewater, J. Membr. Sci., 514 (2016) 229-240.
[26] P. Bacchin, P. Aimar, R.W. Field, Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci., 281 (2006) 42-69.
[27] W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han, G.-b. Li, Membrane fouling control in ultrafiltration technology for drinking water production: A review, Desalination, 272 (2011) 1-8.
[28] H. Ma, C.N. Bowman, R.H. Davis, Membrane fouling reduction by backpulsing and surface modification, J. Membr. Sci., 173 (2000) 191-200.
[29] K. Takata, K. Yamamoto, R. Bian, Y. Watanabe, Removal of humic substances with vibratory shear enhanced processing membrane filtration, Desalination, 117 (1998) 273-282.
[30] A.B. Fradj, S.B. Hamouda, H. Ouni, R. Lafi, L. Gzara, A. Hafiane, Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration, Sep. Purif. Technol., 133 (2014) 76-81.
[31] S.I. Kadioglu, L. Yilmaz, H.O. Ozbelge, Estimation of Binding Constants of Cd(II), Ni(II) and Zn(II) with Polyethyleneimine (PEI) by Polymer Enhanced Ultrafiltration (PEUF) Technique, Sep. Sci. Technol., (2009).
[32] K.M. Persson, V. Gekas, G. Trägårdh, Study of membrane compaction and its influence on ultrafiltration water permeability, J. Membr. Sci., 100 (1995) 155-162.
[33] H. Susanto, M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Membr. Sci., 327 (2009) 125-135.
[34] J.A. Lewis, Colloidal Processing of Ceramics, Journal of the American Ceramic Society, 83 (2000) 2340-2359.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-09-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-09-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信