§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0203201812172900
DOI 10.6846/TKU.2018.00030
論文名稱(中文) 凝膠衍生(P,Si)-TiO2膜在染料敏化太陽能電池的應用
論文名稱(英文) Application of gel-derived (P,Si)-TiO2 films on Dye-Sensitized Solar Cell
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 郭仲凱
研究生(英文) Chung-Kai Kuo
學號 603400127
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-16
論文頁數 74頁
口試委員 指導教授 - 余宣賦(hfyu@mail.tku.edu.tw)
委員 - 賴偉淇(wclai@mail.tku.edu.tw)
委員 - 尹庚鳴
關鍵字(中) 染料敏化太陽能電池
二氧化鈦
溶膠-凝膠法
光電轉換效率
關鍵字(英) TiO2
Dye-sensitized solar cells
Sol-gel method
Photoelectric conversion efficiency
第三語言關鍵字
學科別分類
中文摘要
本實驗利用溶膠-凝膠法、旋轉塗佈法和棒塗法於FTO導電玻璃上製備(P,Si) -TiO2厚膜,並將其組裝成DSSC元件。所製備出的(P,Si)-TiO2厚膜經X-光繞射分析儀、掃描式電子顯微鏡、紫外光-可見光光譜儀、拉曼光譜儀等來了解其結晶相態、晶粒尺寸、膜層表面形態、膜層厚度、可見光穿透度、染料吸附量等。以(P,Si)-TiO2厚膜組裝成之DSSC元件以太陽光模擬器來測得其光電轉化效率。結果顯示隨著(P,Si)-TiO2厚膜厚度的增加其結晶形態維持純的銳鈦礦相態不變,晶粒尺寸也都固定在20 nm,表面結構皆由微米級的二次粒子堆疊而成且具有許多大小不一的裂縫與孔洞。可見光穿透度隨塗佈次數上升而降低,膜層厚度、染料吸附量以及光電轉化效率則是隨塗佈次數增加而上升。當(P,Si)-TiO2膜層厚度達到24m時,所組裝之DSSC元件的光電轉化效率為6.52%,其所對應的開路電壓為0.74V,而閉環電流為18.09 mA/cm2。
英文摘要
The (P,Si)-TiO2 thick films used for DSSCs were synthesized by the sol-gel method, spin coating and bar coating techniques. Effects of film thickness on phase contents, grain growth, surface morpholopy, visible light transmittance and dye loading were investigated using X-ray diffractmeter, scanning electron microscope, ultraviolet-visible light spectrometer and Raman spectrometer. The photoelectric conversion efficiency of the DSSCs was used the prepared (P/Si)-TiO2 thick films  as photoanode measured by a solar simulator. The results showed that increasing the thickness of (P,Si)-TiO2 thick film did not change the crystal structure(anatase structure) and crystillite sizes(20 m) of anatase TiO2 and the morphology of the film. The film were formed by stacking the secondary particles of TiO2 with different sizes. The voids existed in the film. Visible light transmittance decreased with the thickness of (P,Si)-TiO2 thick films. The film thickness, dye loading and photoelectric conversion efficiency were also increased with the thickness of (P,Si)-TiO2 thick films. When the (P,Si)-TiO2 thick films used for DSSCs at 24 m thickness, can give The photoelectric conversion efficiency for the DSSC used the (P,Si)-TiO2 photoanode of 24 m thickness was 6.52%, with Voc= 0.74V and Jsc= 18.09 mA / cm2.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VII
表目錄	X
第一章 緒論	1
第二章 文獻回顧	4
2-1	工作電極	7
2-2	染料敏化劑	10
2-3	電解質	12
2-4	對電極	14
第三章 實驗步驟與特性分析	17
3-1	實驗藥品	17
3-2	實驗步驟	18
3-2-1 (P,Si)-TiO2粉體製備	18
3-2-2 (P,Si)-TiO2光陽極製備	19
3-2-3 電解質與對電極製備	20
3-2-4 DSSCs元件組合	21
3-3	分析儀器	23
3-3-1 X光繞射分析儀(X-ray diffractmeter, XRD)	25
3-3-2 紫外光-可見光光譜儀(UV-Visible spectrophotometer, UV-Vis)	26
3-3-3 掃描式電子顯微鏡(Scanning electron microscope, SEM)	27
3-3-4 太陽光模擬器(Solar Simulator)	28
3-3-5 熱重分析儀與熱示差同步熱分析儀(Simultaneous thermogravimetric and differential scanning calorimetric analyzer, TGA-DSC)	29
3-3-6 比表面積分析儀(Surface Area and Porosimetry Analyzer)	30
3-3-7 拉曼光譜儀(Raman Spectrometer)	34
3-3-8 傅立葉轉換紅外線光譜儀 (Fourier Transform IR Spectrum, FTIR)[57]	35
3-4	DSSCs光電轉換效率計算	36
第四章 結果與討論	38
4-1 (P,Si)-TiO2粉體的特性分析	38
4-2 TiO2光陽極的特性分析	42
4-2-1 FTO導電玻璃分析	42
4-2-2 TiO2光陽極基底層分析	43
4-3 (P,Si)-TiO2光陽極的特性分析	48
4-4 P25元件的特性分析	60
4-4-1 P25粉體的特性分析	60
4-4-2 P25光陽極的特性分析	62
4-4-3 P25元件的光電轉化效率分析	66
第五章 結論	68
參考文獻	70


 
圖目錄
圖2-1染料敏化太陽能電池之示意圖	4
圖2-2染料分子結構圖	12
圖3-1凝膠衍生(P,Si)-TiO2奈米粉體製備流程圖	18
圖3-2 (P,Si)-TiO2漿料製備流程圖	20
圖3-3(P,Si)-TiO2光陽極製備流程圖	20
圖3-4 DSSCs元件組合示意圖	22
圖3-5 X光對晶格之繞射	25
圖3-6  SEM構造示意圖	28
圖3-7太陽光模擬器原理架構示意圖	29
圖3-8六種不同類型的吸附-脫附等溫曲線圖	34
圖3-9  DSSC之I-V曲線圖	37
圖4-1 (P,Si)-TiO2粉體的TGA-DSC圖	39
圖4-2 (P,Si)-TiO2粉體在不同溫度下煆燒3h小時後的XRD圖	40
圖4-3煆燒800oC的(P,Si)-TiO2粉體SEM圖	41
圖4-4 清潔處理後FTO導電玻璃經不同次數的煆燒(550oC,3h)後電阻之變化關係圖	42
圖4-5 FTO導電玻璃的SEM表面結構圖	44
圖4-6旋轉塗佈1層TiO2的SEM表面結構圖	44
圖4-7旋轉塗佈2層TiO2的SEM表面結構圖	45
圖4-8旋轉塗佈3層TiO2的SEM表面結構圖	45
圖4-9 FTO導電玻璃與旋轉塗佈1~3層TiO2的電阻變化圖	46
圖4-10 FTO導電玻璃與旋轉塗佈1~3層TiO2的紫外光-可見光光譜圖	47
圖4-11 TiO2-3L、TiO2-6L和TiO2-9L膜的XRD圖	49
圖4-12 (a)TiO2-3L(b)TiO2-6L(c)TiO2-6LP和(d)TiO2-9L膜的SEM圖	51
圖4-13 (a)TiO2-3L (b)TiO2-6L (c)TiO2-6LP和(d)TiO2-9LSEM截面圖	52
圖4-14 (P,Si)-TiO2厚膜的紫外光-可見光光譜圖	54
圖4-15 (P,Si)-TiO2厚膜的染料吸附量圖	54
圖4-16 不同濃度N719染料的吸附強度檢量線	55
圖4-17 不同厚度TiO2膜層的拉曼光譜圖	56
圖4-18 不同狀態TiO2膜層浸泡N719染料後的Raman圖譜	57
圖4-19 不同狀態膜層組成之DSSC元件的I-V曲線圖	58
圖4-20 P25粉體的XRD圖	61
圖4-21 P25-1L、P25-3L、P25-6L和P25-9L膜的XRD圖	63
圖4-22 P25厚膜的紫外光-可見光光譜圖	64
圖4-23 P25-9L的染料吸附量圖	65
圖4-24 不同狀態膜層組成之DSSC元件的I-V曲線圖	66
 
表目錄
表2-1 二氧化鈦結晶相態與物理性質	8
表2-2染料敏化太陽能電池對電極材料比較	16
表3-1實驗使用藥品清單	17
表4-1 FTO導電玻璃與旋轉塗佈1~3層TiO2的透光度關係	47
表4-2銳鈦礦TiO2拉曼振動波數與模式	56
表4-3 N719染料官能基之拉曼光譜振動波數	57
表4-4 DSSC元件之各項數值	59
表4-5 DSSC元件之各項數值	67
參考文獻
[1] M. Gratzel, Photoelectrochemical cells, nature, 414 (2001) 338.
[2] 劉玉章, 光敏化太陽能電池之應用與發展, 化工技術第16卷第2期, (2008) 150-157.
[3] J.H. Yum, P. Chen, M. Grätzel, M.K. Nazeeruddin, Recent Developments in Solid‐State Dye‐Sensitized Solar Cells, ChemSusChem, 1 (2008) 699-707.
[4] 黃聲東、徐明光, 染料敏化太陽能電池之光敏化劑發展趨勢, 化工技術第15卷第9期, (2007) 198-203.
[5] 馬正鑫,林信宏,劉士賢和呂宗昕, 染料敏化太陽電池與電極製程之應用與發展, 化工技術第16卷112期, (2008) 152-161.
[6] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews, 95 (1995) 735-758.
[7] N.-G. Park, J. Van de Lagemaat, A. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, The Journal of Physical Chemistry B, 104 (2000) 8989-8994.
[8] Y. Su, S. Chen, X. Quan, H. Zhao, Y. Zhang, A silicon-doped TiO 2 nanotube arrays electrode with enhanced photoelectrocatalytic activity, Applied Surface Science, 255 (2008) 2167-2172.
[9] Y. Su, J. Wu, X. Quan, S. Chen, Electrochemically assisted photocatalytic degradation of phenol using silicon-doped TiO 2 nanofilm electrode, Desalination, 252 (2010) 143-148.
[10] J.-S. Yang, W.-P. Liao, J.-J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting, ACS applied materials & interfaces, 5 (2013) 7425-7431.
[11] S. Kundu, P. Sarojinijeeva, R. Karthick, G. Anantharaj, G. Saritha, R. Bera, S. Anandan, A. Patra, P. Ragupathy, M. Selvaraj, Enhancing the Efficiency of DSSCs by the Modification of TiO 2 Photoanodes using N, F and S, co-doped Graphene Quantum Dots, Electrochimica Acta, 242 (2017) 337-343.
[12] 楊士德, P/Si-TiO2 光觸媒相穩定與光催化性質的影響, 碩士論文淡江大學, (2009).
[13] E.H. Jo, H. Chang, S.K. Kim, K.M. Roh, J. Kim, H.D. Jang, Pore size-controlled synthesis of PEG-derived porous TiO 2 particles and photovoltaic performance of dye-sensitized solar cells, Materials Letters, 131 (2014) 244-247.
[14] S.-Q. Fan, C.-J. Li, C.-X. Li, G.-J. Liu, G.-J. Yang, L.-Z. Zhang, Preliminary study of performance of dye-sensitized solar cell of nano-TiO2 coating deposited by vacuum cold spraying, Materials transactions, 47 (2006) 1703-1709.
[15] H.R. Baek, I.S. Eo, Electrochemical properties of TiO 2-metal oxide composites for dye-sensitized solar cell, Current Applied Physics, 17 (2017) 854-857.
[16] K. Balachandran, R. Venckatesh, R. Sivaraj, K. Hemalatha, R. Mariappan, Enhancing power conversion efficiency of DSSC by doping SiO 2 in TiO 2 photo anodes, Materials Science in Semiconductor Processing, 35 (2015) 59-65.
[17] J. Zhao, Y. Yang, C. Cui, H. Hu, Y. Zhang, J. Xu, B. Lu, L. Xu, J. Pan, W. Tang, TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells: the effect of sphere diameter, Journal of Alloys and Compounds, 663 (2016) 211-216.
[18] A. Shalan, M. Rashad, Y. Yu, M. Lira-Cantú, M. Abdel-Mottaleb, A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells, Applied Physics A, 110 (2013) 111-122.
[19] T.-L. Wu, T.-H. Meen, L.-W. Ji, S.-M. Chao, C.-H. Huang, J.-K. Tsai, T.-C. Wu, C.-J. Huang, Fabrication of Open-End TiO2 Nanotubes Attached to Front-Illuminated Dye-Sensitized Solar Cells, Sensors and Materials, 28 (2016) 539-545.
[20] H. Chang, C.-H. Chen, M.-J. Kao, S.-H. Chien, C.-Y. Chou, Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC, Applied Surface Science, 275 (2013) 252-257.
[21] J.-Y. Hong, S.-E. Bae, Y.S. Won, S. Huh, Simple preparation of lotus-root shaped meso-/macroporous TiO 2 and their DSSC performances, Journal of colloid and interface science, 448 (2015) 467-472.
[22] K.-H. Park, M. Dhayal, Simultaneous growth of rutile TiO 2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC, Electrochemistry Communications, 49 (2014) 47-50.
[23] P. Xiang, W. Ma, T. Xiao, L. Jiang, X. Tan, T. Shu, Ta-doped hierarchical TiO 2 spheres for dye-sensitized solar cells, Journal of Alloys and Compounds, 656 (2016) 45-50.
[24] W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO 2 solar cell, Coordination Chemistry Reviews, 248 (2004) 1363-1379.
[25] 劉茂煌, 光染料敏化劑, 工業材料雜誌 203期, (2003).
[26] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO 2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordination chemistry reviews, 248 (2004) 1381-1389.
[27] G. Schlichthörl, N. Park, A. Frank, Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, The Journal of Physical Chemistry B, 103 (1999) 782-791.
[28] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces, The Journal of Physical Chemistry B, 105 (2001) 1422-1429.
[29] Z.-S. Wang, K. Sayama, H. Sugihara, Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte, The Journal of Physical Chemistry B, 109 (2005) 22449-22455.
[30] 陳信宏, 染料敏化太陽能電池近期發展, 光連雙月刊No.84, (2009) 28.
[31] P. Wang, S.M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, A binary ionic liquid electrolyte to achieve≥ 7% power conversion efficiencies in dye-sensitized solar cells, Chemistry of Materials, 16 (2004) 2694-2696.
[32] 吳慧屏, H.-P. Wu, 刁維光, W.-G.E. Diau, 奈米管染料敏化太陽能電池的製備與鑑識及其交流阻抗圖譜的研究, 碩士論文交通大學, (2010).
[33] G. Kumara, S. Kaneko, M. Okuya, K. Tennakone, Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor, Langmuir, 18 (2002) 10493-10495.
[34] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an efficient solid-state dye-sensitized solar cell, langmuir, 19 (2003) 3572-3574.
[35] U. Bach, D. Lupo, P. Comte, J. Moser, Solid-state dye-sensitized mesoporous TiO2 solar cells with high proton-to-electron conversion efficiencies, Nature, 395 (1998) 583.
[36] H.-P. Lu, C.-L. Mai, C.-Y. Tsia, S.-J. Hsu, C.-P. Hsieh, C.-L. Chiu, C.-Y. Yeh, E.W.-G. Diau, Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells, Physical Chemistry Chemical Physics, 11 (2009) 10270-10274.
[37] N. Papageorgiou, W. Maier, M. Grätzel, An iodine/triiodide reduction electrocatalyst for aqueous and organic media, Journal of the electrochemical Society, 144 (1997) 876-884.
[38] A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta, 46 (2001) 3457-3466.
[39] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Application of poly (3, 4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells, Chemistry Letters, 31 (2002) 1060-1061.
[40] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chemistry Letters, 32 (2002) 28-29.
[41] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Materials and Solar Cells, 44 (1996) 99-117.
[42] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, The Journal of Physical Chemistry B, 105 (2001) 12809-12815.
[43] T.N. Murakami, M. Grätzel, Counter electrodes for DSC: application of functional materials as catalysts, Inorganica Chimica Acta, 361 (2008) 572-580.
[44] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570 (2004) 257-263.
[45] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society, 153 (2006) A2255-A2261.
[46] T. Wei, C. Wan, Y. Wang, Poly (N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells, Applied Physics Letters, 88 (2006) 103122.
[47] S. Ito, S.M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, High‐Efficiency Organic‐Dye‐Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness, Advanced Materials, 18 (2006) 1202-1205.
[48] Y. Mine, C. Narazaki, T. Kanezaki, S. Matsuoka, Y. Murakami, Fatigue crack growth behavior and hydrogen penetration properties in austenitic stainless steels exposed to high-pressure hydrogen gas environments, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 93 (2007) 247-256.
[49] W.L. Bragg, The diffraction of short electromagnetic waves by a crystal, (1929).
[50] 楊永盛、楊宗慶, 電子顯微鏡原理與應用, 文京圖書有限公司, (1975).
[51] 國立中興大學, 場發射掃描式電子顯微鏡原理與應用, (2000).
[52] 國科會精密儀器發展中心, 材料電子顯微鏡學, 全華圖書, (2013).
[53] M.N. Rahaman, Ceramic Processing and Sintering (1995).
[54] 莫益帆, 氨基化改質顆粒活性碳及其應用, 專題報告崑山科技大學, (2013).
[55] Z.A. ALOthman, A review: fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874-2902.
[56] 楊迎輝、鄭名宏, 中孔洞分子篩 SBA-15 的製備, 專題報告崑山科技大學, (2009).
[57] 邱承美, 陶金華, 儀器分析原理(修訂三版), 科文出版社, (1987).
[58] A. Abbotto, N. Manfredi, Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells, Dalton Transactions, 40 (2011) 12421-12438.
[59] 鄭珊. 高濂, 張青红, 奈米光觸媒, 五南圖書出版股份有限公司 (2004).
[60] C.P. León, Vibrational Spectroscopy of Photosensitizer Dyes for Organic Solar Cells, Cuvillier Verlag (2006).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信