§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0202202111242200
DOI 10.6846/TKU.2021.00036
論文名稱(中文) 非線性動態反算之飛翼無人機飛控系統設計
論文名稱(英文) Design of a Nonlinear Dynamic Inversion Based Flight Control System for a Flying-Wing UAV
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 陳鼎文
研究生(英文) Ding-Wen Chen
學號 608430053
學位類別 碩士
語言別 英文
第二語言別
口試日期 2020-12-18
論文頁數 45頁
口試委員 指導教授 - 蕭照焜(shiauj@mail.tku.edu.tw)
委員 - 蕭照焜(shiauj@mail.tku.edu.tw)
委員 - 馬德明(derming@mail.tku.edu.tw)
委員 - 蕭富元(fyhsiao@mail.tku.edu.tw)
關鍵字(中) 非線性控制器
非線性動態反算
飛翼
導引率
關鍵字(英) Nonlinear Control Theory
Nonlinear Dynamic Inversion
Flying Wing
Guidance Law
第三語言關鍵字
學科別分類
中文摘要
本論文的目的在於設計僅以升降舵補助翼控制之有效的非線性控制器,及可以追蹤指定軌跡之導引率。
    其非線性控制器採用非線性動態反算,此控制器將縱橫向運動解耦合,並能夠有效的控制飛機之滾轉率及俯仰率,且依據理想動力來設計其參數。導引律則採用三維自適應最佳導引律,該導引律是由線性二次調節器(LQR控制器)推導出,其可追蹤指定之飛行路徑。
    最後成功以模擬演示該控制律以及導引律能夠將無尾翼飛機追蹤其指定之軌跡。
英文摘要
The purpose of this thesis is to design an effective nonlinear flight control system that only uses elevon to control the flying-wing UAV and to design the guidance law that can track the specified trajectory. The nonlinear dynamic inversion technique is adopted for this control system design. It can effectively control the roll rate and pitch rate of the aircraft and meet the design requirement of the desired dynamics generated to satisfy certain flying qualities. The thesis also developed an infinite-horizon LQR based three-dimensional adaptive optimal guidance law to track the designated flight path. Finally, computer simulations were successfully demonstrated to show that the proposed control law and guidance law can control the flying-wing UAV track the designated trajectory effectively.
第三語言摘要
論文目次
1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Historical and Literature Review . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 A Brief History and Introduction of Flying Wing . . . . . . . . . . 2
1.2.2 Nonlinear Dynamic Inversion and Control Strategies . . . . . . . . 3
1.3 Overview of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Dynamics of the FlyingWing 5
2.1 Kinetics of the Flying Wing . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Kinematics of the Flying Wing . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Nonlinear Dynamic Inversion 9
3.1 Nonlinear Dynamic Inversion Control Law . . . . . . . . . . . . . . . . . . 9
3.2 NDI Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Affine Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Fast-loop NDI controller . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Desired Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Desired Dynamic of the Rolling Rate . . . . . . . . . . . . . . . . 13
3.3.2 Desired Dynamic of the Pitching Rate . . . . . . . . . . . . . . . . 14
3.4 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Guidance Law Design 20
4.1 Three-Dimensional Adaptive Optimal Guidance Law . . . . . . . . . . . . 20
4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Conclusion and Discussion 29
References 30
Appendix A The FlyingWing Model 32

List of Figures
1.1 The flying wing for simulation model . . . . . . . . . . . . . . . . . . . . 1
3.1 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Structure of the desired dynamics of rolling rate . . . . . . . . . . . . . . . 14
3.3 Structure of the desired dynamics of pitching rate . . . . . . . . . . . . . . 14
3.4 The simulation system with controller . . . . . . . . . . . . . . . . . . . . 15
3.5 The control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 The PI controller about autothrottle . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Command with the pitchling rate . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Command with the rolling rate . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 The definition of two distances . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The simulation system with guidance . . . . . . . . . . . . . . . . . . . . . 23
4.3 Tracking climbing and declining trajectory . . . . . . . . . . . . . . . . . . 25
4.4 Tracking the circle with a radius of 50 meters . . . . . . . . . . . . . . . . 28
參考文獻
[1] O. ALBOSTAN and M. GÖKAAN. High angle of attack maneuvering control of f-16 aircraft based on nonlinear dynamic inversion and eigenstructure assignment. 7th European Conference for Aeronautics and Space Sciences, 2017. doi: 10.13009/EUCASS2017-228.
[2] M. J. Amoruso. Euler angles and quaternions in six degree if freedom simulations of projectiles. Army Armament Research, Development and Engineering Center, ADA417259, March 1996.
[3] P. H. Chung, D. M. Ma, and J. K. Shiau. Design, manufacturing, and flight testing of an experimental flying wing uav. Applied Sciences, 9(3043), July 2019. doi: https://doi.org/10.3390/app9153043.
[4] F. B. Hsiao, L. Duan, and W. C. Lu. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers - Series C, 29(2):1694–1699, April 2008.
[5] H. Y. Kang. Quaternion nonlinear dynamic inversion autonomous flight controller for supermaneuverable aircraft. Master’s thesis, Department of Aeronautics and Astronautic, National Cheng Kung University, Tainan, Taiwan, August 2016.
[6] LeonardoCompany.com. neuron testing the excellence for future flying. URL https://www.leonardocompany.com/en/products/neuron.
[7] A. T. Lin. Simulation of a tailless unmanned aerial vehicle. Master’s thesis, Department of Aerospace Engineering, Tamkang University, New Taipei City, Taiwan, June 2020.
[8] NorthropGrumman-Youtube.com. X-47b completes first autonomous aerial refueling. URL https://www.leonardocompany.com/en/products/neuron.
[9] A. Ratnoo, P. Sujit, and M. Kothari. Adaptive optimal path following for high wind flights. 18th IFAC World Congress, 44(1):12985–12990, August 2011. doi: https://doi.org/10.2514/3.
20932.
[10] S. A. Snell, D. F. Enns, and W. L. Garrard. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics, 15(4):976–984, July–August
1992. doi: https://doi.org/10.2514/3.20932.
[11] J. Solà. Quaternion kinematics for the error-state Kalman filter. Cornell University, Department of Computer Science, ADA417259, Nov. 2017. doi: arXiv:1711.02508[cs.RO].
[12] L. Wang and L. Wang. Reconfigurable flight control design for combat flying wing with multiple control surfaces. Chinese Journal of Aeronautics, 25(2012):493–499, October 2011. doi: 10.2991/iccasm.2012.209.
[13] Wikipedia.org. Northrop grumman b-2 spirit, . URL https://en.wikipedia.org/wiki/Northrop_Grumman_B-2_Spirit.
[14] Wikipedia.org. Horten ho 229, . URL https://en.wikipedia.org/wiki/Horten_Ho_229.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信