§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0109201614494200
DOI 10.6846/TKU.2016.00040
論文名稱(中文) 能量收集傳感器網絡的廣播通信延遲時間
論文名稱(英文) Bounding Broadcast Communication Delay in Energy Harvesting Sensor Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 康寗
研究生(英文) Ning Kang
學號 603410621
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-20
論文頁數 43頁
口試委員 指導教授 - 蔡憶佳(eplusplus@gmail.com)
指導教授 - 蔡憶佳(eplusplus@gmail.com)
委員 - 顏淑惠(105390@mail.tku.edu.tw)
委員 - 林慶昌(petani@gmail.com)
關鍵字(中) 能量收集感測網絡
廣播
低占空比
延遲時間
關鍵字(英) Energy Harvesting Sensor Networks
Broadcast
Low Duty Cycle
Delay Time
第三語言關鍵字
學科別分類
中文摘要
在能量限制的感測器環境中,傳感器節點必須以低佔空比方式運作。也就是說,能量收集傳感器網路裡,大部分時間感測器節點是保持在睡眠狀態,只有在通訊時醒來。在低佔空比的能量收集感測網絡裡,通信延遲時間是一個新的挑戰在傳感器網絡應用(例如,跟踪和警報)。在本文中,我們介紹了節點通訊延遲界限問題在能量收集的解決方案。首先提出「單播」方式的解決方案找出最小的延遲時間,再利用「廣播」的方式縮短延遲時間。最後利用「單播」和「廣播」方法進行模擬比較。「廣播」比「單播」方法還要好,減少更多的延遲時間。
英文摘要
In Wireless Sensor Network, sensor nodes must operate at a low duty cycle mode in energy restricted sensors environment.
Therefore, the sensor node remained in a dormant state most of the time and only to woke up when communication is needed in energy collected sensor network. 
The communication delay time is a new challenge for low duty cycle energy harvesting sensor network applications (for example, tracking and alert). 
In this paper, we introduce a delay bound node communication solution in energy harvesting network.First we proposed the "unicast" type of solution to identify the minimum delay time, and then we use "broadcast" approach to shorten the delay time.
 Finally, we compare the simulation results of "unicast" and "broadcast" method.
 "Broadcast" is better than "unicast" method reduced more delay times.
第三語言摘要
論文目次
目錄
Acknowledgements ii
論文提要 iii
Abstract iv
第一章 緒論 1
1.1 前言 . . 1
1.2 研究動機 . . 2
1.3 研究方法 . . 3
1.4 論文架構 . . 5
第二章 背景知識與相關研究 6
2.1 低占空比 (low duty cycle) . . 6
2.2 單播 (unicast) . . 7
2.3 廣播 (broadcast) . . 8
2.4 感測器模塊的架構與運作方式 . . 9
2.5 感測器電量消耗的參數 . . 10
第三章 網絡模型 11
3.1 節點工作行程表 . .11
3.2 假設條件 . . 12
第四章 方法設計 15
4.1 單播 . . 15
4.2 廣播 . . 19
第五章 模擬評估 22
5.1 基本設置 . . 22
5.2 某段時間內的系統性能 . . 23
5.3 系統數據分析 . . 25
第六章 結論 31
參考文獻 32
附錄-英文論文 35

圖目錄
1.1 節點延遲界限百分比 vs 節點的延遲時間界限 . . 3
1.2 單播延遲時間示意圖 . . 3
1.3 單播傳遞到多個目的地 . . 4
1.4 廣播傳遞到多個目的地 . . 5
2.1 單播封包傳送的例子 . . 8
2.2 廣播封包傳送的例子 . . 9
2.3 感測器模塊的區塊圖 . . 10
2.4 感測器節點的電量表示法 . . 10
3.1 感測器節點工作行程表的例子 . . 12
3.2 網絡拓墣圖 . . 14
3.3 時序圖 . . 14
4.1 網絡拓樸圖延遲時間 . . 16
4.2 節點與延遲時間之樹狀圖第一步 . . 17
4.3 節點與延遲時間之樹狀圖第二步 . . 17
4.4 節點與延遲時間之樹狀圖 . . 17
4.5 節點 0 到所有節點的最小延遲時間 . . 17
4.6 節點 0 到所有節點最小延遲時間的拓墣圖 . . 18
4.7 網絡拓樸圖最小延遲時間 . . 19
4.8 廣播分群第一步 . . 20
4.9 廣播分群第二步 . . 20
4.10 廣播分群最小延遲時間 . . 21
5.1 簡化方案例子轉換成樹狀圖 . . 23
5.2 廣播方案的例子 . . 23
5.3 節點能量收集率的樣本 . . 24
5.4 模擬設置的網絡拓樸圖 . . 25
5.5 網絡拓樸的分層圖 . . 26
5.6 平均延遲時間 vs 分層 . . 27
5.7 減少的平均延遲時間 vs 分層 . . 28
5.8 模擬設置的網絡拓樸圖 2 . . 29
5.9 平均延遲時間 vs 第 n 個感測器 . . 29
5.10 廣播減少的平均延遲時間 vs 第 n 個感測器 . . 30
參考文獻
參考文獻

[1] H. M. Ammari and J. Giudici, “On the connected k-coverage problem in heterogeneous
sensor nets: The curse of randomness and heterogeneity”, in International conference on
distributed computing systems(icdcs), 2009.

[2] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal sleep scheduling
in sensor networks for rare event detection”, in Information processing in sensor networks(ipsn),
2005.

[3] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K.Whitehouse, and D.
Culler, “Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments”,
in Information processing in sensor networks(ipsn), 2006.

[4] E. Felemban, C. Lee, E. Ekici, R. Boder, and S. Vural, “Probabilistic qos guarantee in reliablility
and timeliness domains in wireless senosr networks”, in Infocom, 2005, pp. 2646
–2657.

[5] Yu Gu and Tian He, “Bounding communication delay in energy harvesting sensor networks”,
in International conference on distributed computing systems(icdcs), 2010.

[6] C. Gui and P. Mohapatra, “Virtual patrol: A new power conservation design for surveillance
using sensor networks”, in Information processing in sensor networks(ipsn), 2005.

[7] J. Hong, J. Cao, Y. Zeng, S. Lu, D. Chen, and Z. Li, “A location-free prediction-based
sleep scheduling protocol for object tracking in sensor networks”, in International conference
on network protocols(icnp), 2009.

[8] W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and V. N. Tran, “Design and evaluation
of a hybrid sensor network for cane toad monitoring”, Transactions on sensor networks
(tosn), 2009.

[9] M. Huntwork, A. Goradia, N. Xi, C. Haffner, C. Klochko, and M. Mutka, “Pervasive
surveillance using a cooperative mobile sensor network”, in International conference on
robotics and automation(icra), 2006.

[10] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in energy harvesting
sensor networks”, Transactions on embedded computing systems(tecs), 2007.

[11] A. Kansal, D. Potter, and M. B. Srivastava, “Performance aware tasking for environmentally
powered sensor networks”, in Sigmetrics, 2004, pp. 223–234.

[12] Y. L, C. Ai, C. T. Vu, Y. Pan, and R. Beyah, “Delay bounded and energy efficient composite
event monitoring in heterogeneous wireless sensor networks”, Transactions on
parallel and distributed systems(tpds), 2009.

[13] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time synchronization
protocol”, in Embedded networked sensor systems(sensys), 2004.

[14] L. Mo, Y. He, Y. Liu, J. Zhao, S.-J. Tang, X.-Y. Li, and G. Dai, “Canopy closure estimates
with greenorbs: Sustainable sensing in the forest”, in Embedded networked sensor
systems(sensys), 2009.

[15] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann, and D. Estrin, “Studying the feasibility
of energy harvesting in a mobile sensor network”, in International conference on robotics
and automation(icra), 2003.

[16] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Harmon, and D. Estrin,
“Suelo: Human-assisted sensing for exploratory soil monitoring studies”, in Embedded
networked sensor systems(sensys), 2009.

[17] K. Shah and M. Kumar, “Distributed independent reinforcement learning (dirl) approach
to resource management in wireless sensor networks”, in International conference on
mobile adhoc and sensor systems(mass), 2007.

[18] C. Vigorito, D. Ganesan, and A. Bartoeeee, “Adaptive control of duty cycling in energyharvesting
wireless sensor networks”, in Sensor, mesh and ad hoc communications and
networks(sahcn), 2007.

[19] X. Yang and N. H. Vaidya, “A wakeup scheme for sensor networks: Achieving balance
between energy saving and end-to-end delay”, in Real-time and embedded technology
and applications symposium(rtas), 2004.

[20] Yang Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs for data
gathering in wireless sensor networks”, in Infocom, 2004, p. 255.

[21] M. Zamalloa, K. Seada, B. Krishnamachari, and A. Helmy, “Efficient geographic routing
over lossy links in wireless sensor networks”, Transactions on sensor networks(tosn),
2008.

[22] G. Zhou, T. He, and J. A. Stankovic, “Impact of radio irregularity on wireless sensor
networks”, in International conference on mobile systems(mobisys’04), 2004.

[23] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.-L. Zhang, “Leakage-aware energy synchronization
for wireless sensor networks”, in International conference on mobile systems(mobisys),
2009.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信