§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0109201011132500
DOI 10.6846/TKU.2010.00023
論文名稱(中文) 以不同方式活化過硫酸鈉處理染整廢水之研究
論文名稱(英文) Treating dye wastewater by persulfate oxidation process with various activation methods
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 陳蓁怡
研究生(英文) Chen-Yi Chen
學號 697480084
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-06-21
論文頁數 64頁
口試委員 指導教授 - 李奇旺
委員 - 陳孝行
委員 - 李柏青
關鍵字(中) 過硫酸鹽
超音波
催化
零價鐵
關鍵字(英) persulfate
ultrasound
activate
Zero-valent iron
第三語言關鍵字
學科別分類
中文摘要
染整廢水處理技術研究文獻中,高級氧化處理程序(Advanced Oxidation Processes, AOPs)是較為廣泛採用方法之一,其中又以Fenton處理程序為主要處理技術,但此方法之缺點為藥劑添加量高及污泥產生量大。因此本研究擬採行超音波加熱作為催化方法,並配合添加過硫酸鈉產生硫酸根自由基之方式,希望藉由超音波震動產生熱能,催化過硫酸鹽產生強氧化力之硫酸根自由基(SO4-˙),達到去除污染物的效果。因此,其性質穩定且對環境無危害,所以後續處理上較處理大量污泥或是其他二次汙染要來的容易之優點,加上超音波屬於物理性之催化角色,來發展更新穎且無害於環境之處理程序。
    實驗結果顯示,藉由超音波催化水樣溫度可高達70℃,因而縮短染料色度降解的時間。而實驗條件為超音波催化時,與單純加熱催化相比,在低溫度(30、40℃)條件下,超音波可明顯提升色度去除效率,反之在高溫(60℃)時,超音波則使色度去除率降低。
    在零價鐵結合過硫酸鈉的批次實驗中,實驗結果說明色度去除效率的提高會隨著過硫酸鹽濃度的增加(PS/Dye莫爾比的增加),但會隨著起始pH值的增加而減少;零價鐵結合過氧化氫的實驗中,色度去除效率的降低會隨著過氧化氫濃度的減少,但是會隨著起始pH值的增加而減少,使零價鐵表面氧化,降低色度去除效果;綜合兩者氧化劑結合零價鐵比較發現,最理想的pH值為3。探討零價鐵於管柱實驗中操作的可行性,結果顯示染料的降解受到起始pH值以及水力停留時間的影響並不明顯。
英文摘要
Advanced oxidation processes (AOPs) were wildly studied for dye wastewater treatment. Among the AOPs,Fenton process was the most discussed treatment technologies. However, Fenton process has following disadvantages including high dosage required and large amount of sludge generated. Therefore, the objective of this study is to study ultrasound-activation of persulfate to produce a very powerful oxidant, sulfate free radical, for dye wastewater treatment. Sodium persulfate is a stable and harmless material for environment. The results showed ultrasound can activate persulfate, and the reaction temperature can reach up to70℃. Comparison of ultrasound- and heat-activation of persulfate for dye removal , ultrasound-activation shows higher removal efficiency of dye than heat-activation when temperature is fixed at 25 and40 ℃. However, ultrasound-activation has lower color removal efficiency than heat-activation when temperature is fixed at 60℃.
   Zero-valent iron (ZVI) was also used for persulfate activation under batch and column reactors. The experimental results showed color removal efficiency increased with the increase of persulfate concentration, but decreased with the increase of initial pH value. In the experiment of zero-valent iron combined hydrogen peroxide, color removal efficiency decreased with the decreased of hydrogen peroxide concentration, but decreased with the increase of initial pH value due to passivation of ZVI by iron oxide. For both ZVI/persulfate and ZVI/hydrogen peroxide systems, optimized pH value for dye removal was found to be 3.0. In ZVI column experiments, the results showed the initial pH value and HRT did not significantly impact the degradation of dyes.
第三語言摘要
論文目次
目錄	I
圖目錄	IV
表目錄	VII
第一章	研究緣起	1
1.1研究背景及目的	1
1.1.1研究背景	1
1.1.2研究目的	2
第二章	文獻回顧	3
2.1偶氮染料	3
2.2高級氧化處理程序 (Advanced oxidation process , AOP)	3
2.2.1Fenton程序的原理及機制	4
2.3超音波	6
2.3.1超音波的基本性質	6
2.3.2超音波反應理論	7
2.3.3超音波應用型態	7
2.3.4超音波與其他程序結合之應用	9
2.3.5影響超音波反應之因素	10
2.4零價鐵	12
2.4.1零價鐵的基本特性及反應機制	12
2.4.2影響零價鐵能力的因素	12
2.4.3結合零價鐵技術的應用	14
2.5氧化劑	14
2.5.1過氧化氫	15
2.5.2過硫酸鹽	15
第三章	實驗材料與方法	17
3.1實驗藥品	17
3.1.1染料廢水製備	17
3.1.2 過硫酸鈉氧化劑的製備	17
3.1.3 過硫酸鈉殘餘分析級藥品-硫代硫酸鈉的滴定	17
3.1.4過氧化氫	19
3.1.5甲醇	19
3.2實驗設備	19
3.2.1超音波系統	19
3.2.2零價鐵系統	20
3.2.3紫外光分光光度計	21
3.2.4自動電位滴定裝置	21
3.2.5 管柱實驗	21
3.3實驗方法流程	22
3.3.1超音波實驗	22
3.3.2零價鐵實驗	23
3.3.3 管柱實驗	24
3.4分析方法	24
3.4.1過硫酸根殘餘量-硫代硫酸鈉滴定	24
3.4.2總鐵的量測方法	25
第四章	結果與討論	26
4.1純水系統過硫酸鈉之產生量	26
4.1.1加熱對過硫酸鹽的影響	26
4.1.2超音波對過硫酸鹽的影響	27
4.1.3純水系統單純加熱及超音波控溫之比較	28
4.2 加熱系統和超音波系統對染料降解情形	28
4.3零價鐵系統結合過硫酸鈉程序降解染料Orange II的情形	31
4.3.1有無添加過硫酸鈉氧化劑之影響	31
4.3.2不同氧化劑/染料莫爾比下降解染料的影響	32
4.3.3起始pH值對色度去除影響	34
4.3.4過硫酸鈉與過氧化氫於不同起始pH值下色度降解之比較	35
4.3.5不同氧化劑/染料莫爾比之加酸量的影響	42
4.3.6不控制pH值與控制起始pH值鐵溶出量的比較	45
4.4 管柱實驗的應用	48
4.4.1 於不同起始pH值下無添加氧化劑之影響	48
4.4.2 於水力停留時間2.94 s相同氧化劑/染料莫爾比不同起始pH值色度降解的影響	50
4.4.3於水力停留時間10 s相同氧化劑/染料莫爾比不同起始pH值色度降解的影響	54
第五章	結論與建議	59
參考文獻	60

   圖目錄
圖 1.Acid Orange 7結構圖	3
圖 2.液相中超音波反應之區域[32]	7
圖 3.超音波槽	8
圖 4.探針式	8
圖 5.平板式	9
圖 6.超音波系統:1.轉換器2.探針3.幫浦4.燒杯5.磁石攪拌器6.溫度探針7.啟動器8.加熱器9.溫度控制器	19
圖 7.零價鐵系統	20
圖 8.管柱實驗示意圖	22
圖 9.總鐵檢量線	25
圖 10.在不同溫度下Na2S2O8分解情形(甲醇39.35 mM)	26
圖 11.超音波於不同溫度下Na2S2O8的分解情形(甲醇39.35 mM)	27
圖 12.不同溫度下染料Orange II的降解情形	29
圖 13.超音波於不同溫度下染料Orange II的降解情形	30
圖 14.零價鐵(1 g/L)結合氧化劑(1.28 mM)對Orange II(0.086 mM)的降解情形	31
圖 15.零價鐵(1 g/L)結合氧化劑(1.28 mM)pH值變化	32
圖 16.不同PS/Dye莫爾比下降解染料(0.086 mM)	33
圖 17.不同PS/Dye莫爾比下pH值變化	33
圖 18.不同起始pH值,零價鐵(1 g/L)未添加氧化劑條件下pH值變化	34
圖 19.不同起始pH值下總鐵的產生量	35
圖 20.PS/Dye=15和H2O2/Dye=15染料降解的情形(Initial pH 3)	36
圖 21.PS/Dye=15和H2O2/Dye=15染料降解的情形(Initial pH 4)	36
圖 22.PS/Dye=15和H2O2/Dye=15染料降解的情形(Initial pH 5)	37
圖 23.PS/Dye=10和H2O2/Dye=10染料降解的情形(Initial pH 3)	38
圖 24.PS/Dye=10和H2O2/Dye=10染料降解的情形(Initial pH 4)	38
圖 25. PS/Dye=10和H2O2/Dye=10染料降解的情形(Initial pH 5)	39
圖 26.PS/Dye=5和H2O2/Dye=5染料降解的情形(Initial pH 3)	40
圖 27.PS/Dye=5和H2O2/Dye=5染料降解的情形(Initial pH 4)	40
圖 28.PS/Dye=5和H2O2/Dye=5染料降解的情形(Initial pH 5)	41
圖 29.不同氧化劑/染料莫爾比下加酸量 (pH=3,ZVI=1g/L)	44
圖 30.不同氧化劑/染料莫爾比下染料降解情形 (pH=3,ZVI=1g/L)	44
圖 31.不同氧化劑/染料莫爾比下總鐵的產生量(pH=3)	45
圖 32.不同H2O2/Dye莫爾比色度降解及pH變化	46
圖 33.不同PS/Dye莫爾比色度降解及pH變化	46
圖 34.不同氧化劑/染料莫爾比下總鐵的產生量(未控制pH)	47
圖 35.不同進流水起始pH值下染料降解的情形	49
圖 36.不同進流水起始pH值下pH值變化	50
圖 37. PS/Dye = 15和H2O2/Dye = 15染料降解的情形(Initial pH3)	51
圖 38. PS/Dye = 15和H2O2/Dye = 15染料降解的情形(Initial pH5)	51
圖 39. PS/Dye = 5和H2O2/Dye = 5染料降解的情形(Initial pH3)	52
圖 40. PS/Dye = 5和H2O2/Dye = 5染料降解的情形(Initial pH5)	52
圖 41. H2O2/Dye莫爾比下pH變化	53
圖 42. PS/Dye莫爾比下pH變化	54
圖 43. PS/Dye = 15和H2O2/Dye = 15染料降解的情形(Initial pH3)	55
圖 44. PS/Dye = 15和H2O2/Dye = 15染料降解的情形(Initial pH5)	55
圖 45. PS/Dye = 5和H2O2/Dye = 5染料降解的情形(Initial pH3)	56
圖 46. PS/Dye = 5和H2O2/Dye = 5染料降解的情形(Initial pH5)	56
圖 47. H2O2/Dye莫爾比下pH變化	57
圖 48. PS/Dye莫爾比下pH變化	57

表目錄
表 1.常見氧化劑的氧化還原電位表[9, 46, 53, 54]	15
表 2.超音波震盪儀 (Sonicator) (Misonix, Inc., NY, US)之規格	21
表 3.不同方式活化過硫酸鈉之過硫酸鹽殘餘量	28
表 4.不同方式活化過硫酸鈉的色度降解	30
表 5.單純零價鐵與零價鐵添加氧化劑的色度降解	41
表 6.不同氧化劑/染料莫爾比的色度降解	42
表 7.不同氧化劑/染料莫爾比之加酸量	43
表 8.不同氧化劑/染料莫爾比染料降解和總鐵產生量(未控制pH)	48
表 9.不同氧化劑/染料莫爾比總鐵產生量(控制起始pH)	48
參考文獻
1.	Hasani Zonoozi, M.; Alavi Moghaddam, M. R.; Arami, M., Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. In Water Science and Technology, 2009; Vol. 59, pp 1343-1351.
2.	Amin, N. K., Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials 2009, 165, (1-3), 52-62.
3.	Parsa, J. B.; Rezaei, M.; Soleymani, A. R., Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. Journal of Hazardous Materials 2009, 168, (2-3), 997-1003.
4.	Song, Y. L.; Li, J. T.; Chen, H., Degradation of C.I. acid red 88 aqueous solution by combination of fenton's reagent and ultrasound irradiation. Journal of Chemical Technology and Biotechnology 2009, 84, (4), 578-583.
5.	Zhang, H.; Zhang, J.; Zhang, C.; Liu, F.; Zhang, D., Degradation of C.I. Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry 2009, 16, (3), 325-330.
6.	Hsueh, C. L.; Huang, Y. H.; Wang, C. C.; Chen, C. Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 2005, 58, (10), 1409-1414.
7.	Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R., Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials 2010.
8.	Oh, S. Y.; Kang, S. G.; Chiu, P. C., Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Science of the Total Environment 2010.
9.	Oh, S. Y.; Kim, H. W.; Park, J. M.; Park, H. S.; Yoon, C., Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials 2009, 168, (1), 346-351.
10.	Xu, X. R.; Li, X. Z., Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology 2010, 72, (1), 105-111.
11.	Ji, P.; Zhang, J.; Chen, F.; Anpo, M., Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B: Environmental 2009, 85, (3-4), 148-154.
12.	Liu, L.-Y.; Pu, M.; Yang, L.; Li, D.-Q.; Evans, D. G.; He, J., Experimental and theoretical study on the structure of acid orange 7-pillared layered double hydroxide. Materials Chemistry and Physics 2007, 106, (2-3), 422-427.
13.	Aleboyeh, A.; Olya, M. E.; Aleboyeh, H., Oxidative treatment of azo dyes in aqueous solution by potassium permanganate. Journal of Hazardous Materials 2009, 162, (2-3), 1530-1535.
14.	Golka, K.; Kopps, S.; Myslak, Z. W., Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicology Letters 2004, 151, (1), 203-210.
15.	Aber, S.; Daneshvar, N.; Soroureddin, S. M.; Chabok, A.; Asadpour-Zeynali, K., Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination 2007, 211, (1-3), 87-95.
16.	Glaze, W. H.; Lay, Y.; Kang, J.-W., Advanced Oxidation Processes. A Kinetic Model for the Oxidation of 1,2-Dibromo-3-chloropropane in Water by the Combination of Hydrogen Peroxide and UV Radiation. Industrial & Engineering Chemistry Research 1995, 34, (7), 2314-2323.
17.	Le Lacheur, R. M.; Glaze, W. H., Reactions of Ozone and Hydroxyl Radicals with Serine. Environmental Science & Technology 1996, 30, (4), 1072-1080.
18.	Petrier, C.; Micolle, M.; Merlin, G.; Luche, J. L.; Reverdy, G., Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound. Environmental Science & Technology 1992, 26, (8), 1639-1642.
19.	Kotronarou, A.; Mills, G.; Hoffmann, M. R., Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation. Environmental Science & Technology 1992, 26, (12), 2420-2428.
20.	Yoon, J.; Lee, Y.; Kim, S., Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. In Water Science and Technology, 2001; Vol. 44, pp 15-21.
21.	Walling, C., Fenton's reagent revisited. Accounts of Chemical Research 1975, 8, (4), 125-131.
22.	Gallard, H.; De Laat, J., Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Research 2000, 34, (12), 3107-3116.
23.	Lin, S. H.; Lo, C. C., Fenton process for treatment of desizing wastewater. Water Research 1997, 31, (8), 2050-2056.
24.	黃茂坤, 工業用超音波檢測實務彙整. 中船公司高雄總廠訓練中心: 1996; p 1-2.
25.	Asakura, Y.; Nishida, T.; Matsuoka, T.; Koda, S., Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrasonics Sonochemistry 2008, 15, (3), 244-250.
26.	洪紹軒. 以UV/TiO2結合超音波程序降解偶氮染料Acid Yellow 17之研究. 國立中興大學環境工程學系所, 2007.
27.	Zhang, Z.; Zheng, H., Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials 2009, 172, (2-3), 1388-1393.
28.	Adewuyi, Y. G., Sonochemistry: Environmental science and engineering applications. Industrial and Engineering Chemistry Research 2001, 40, (22), 4681-4715.
29.	Mason, T. J.; Lorimer, J. P.; Bates, D. M., Quantifying sonochemistry: Casting some light on a 'black art'. Ultrasonics 1992, 30, (1), 40-42.
30.	Shrestha, R. A.; Pham, T. D.; Sillanpää, M., Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils. Journal of Hazardous Materials 2009, 170, (2-3), 871-875.
31.	Suslick, K. S.; Hammerton, D. A.; Cline Jr, R. E., The sonochemical hot spot. Journal of the American Chemical Society 1986, 108, (18), 5641-5642.
32.	Ince, N. H.; Tezcanli, G.; Belen, R. K.; Apikyan, I. G., Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Applied Catalysis B: Environmental 2001, 29, (3), 167-176.
33.	Wang, X.; Qiu, Z.; Lu, S.; Ying, W., Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge. Journal of Hazardous Materials 2010, 176, (1-3), 35-40.
34.	Collings, A. F.; Farmer, A. D.; Gwan, P. B.; Pintos, A. P. S.; Leo, C. J., Processing contaminated soils and sediments by high power ultrasound. Minerals Engineering 2006, 19, (5), 450-453.
35.	Tezcanli-Güyer, G.; Ince, N. H., Individual and combined effects of ultrasound, ozone and UV irradiation: A case study with textile dyes. Ultrasonics 2004, 42, (1-9), 603-609.
36.	Zhang, G.; Hua, I., Cavitation chemistry of polychlorinated biphenyls: Decomposition mechanisms and rates. Environmental Science and Technology 2000, 34, (8), 1529-1534.
37.	Pandit, A. B.; Moholkar, V. S., Harness cavitation to improve processing. Chemical Engineering Progress 1996, 92, (7), 57-67.
38.	Entezari, M. H.; Kruus, P., Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrasonics Sonochemistry 1996, 3, (1), 19-24.
39.	Entezari, M. H.; Kruus, P., Effect of frequency on sonochemical reactions. I: Oxidation of iodide. Ultrasonics Sonochemistry 1994, 1, (2), S75-S79.
40.	Liu, H.; Li, G.; Qu, J., Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. Journal of Hazardous Materials 2007, 144, (1-2), 180-186.
41.	Chen, J. L.; Al-Abed, S. R.; Ryan, J. A.; Li, Z., Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials 2001, 83, (3), 243-254.
42.	Epolito, W. J.; Yang, H.; Bottomley, L. A.; Pavlostathis, S. G., Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. Journal of Hazardous Materials 2008, 160, (2-3), 594-600.
43.	陳一銘. 零價鐵去除水中硝酸鹽之研究. 淡江大學水資源環境工程學系博士論文, 2007.
44.	Zhang, H.; Duan, L.; Zhang, Y.; Wu, F., The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments 2005, 65, (1), 39-43.
45.	Kallel, M.; Belaid, C.; Mechichi, T.; Ksibi, M.; Elleuch, B., Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chemical Engineering Journal 2009, 150, (2-3), 391-395.
46.	Neyens, E.; Baeyens, J., A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 2003, 98, (1-3), 33-50.
47.	Stefánsson, A., Iron(III) hydrolysis and solubility at  25°C Environmental Science and Technology 2007, 41, (17), 6117-6123.
48.	Namkung, K. C.; Burgess, A. E.; Bremner, D. H.; Staines, H., Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects. Ultrasonics Sonochemistry 2008, 15, (3), 171-176.
49.	Bremner, D. H.; Burgess, A. E.; Houllemare, D.; Namkung, K. C., Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Applied Catalysis B: Environmental 2006, 63, (1-2), 15-19.
50.	Zhao, J.; Zhang, Y.; Quan, X.; Chen, S., Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology 2010, 71, (3), 302-307.
51.	Liao, C. H.; Kang, S. F.; Hsu, Y. W., Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research 2003, 37, (17), 4109-4118.
52.	Elmorsi, T. M.; Riyad, Y. M.; Mohamed, Z. H.; Abd El Bary, H. M. H., Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials 2010, 174, (1-3), 352-358.
53.	Liang, C.; Wang, Z.-S.; Bruell, C. J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66, (1), 106-113.
54.	Kusic, H.; Loncaric Bozic, A.; Koprivanac, N.; Papic, S., Fenton type processes for minimization of organic content in coloured wastewaters. Part II: Combination with zeolites. Dyes and Pigments 2007, 74, (2), 388-395.
55.	House, D. A., Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 1962, 62, 185-203.
56.	Erkselius, S.; Karlsson, O. J., Free radical degradation of hydroxyethyl cellulose. Carbohydrate Polymers 2005, 62, (4), 344-356.
57.	Yang, S.; Wang, P.; Yang, X.; Wei, G.; Zhang, W.; Shan, L., A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of Environmental Sciences 2009, 21, (9), 1175-1180.
58.	Price, G. J.; Clifton, A. A.; Keen, F., Ultrasonically enhanced persulfate oxidation of polyethylene surfaces. Polymer 1996, 37, (26), 5825-5829.
59.	林佩雲. 水中常見之陰離子對過硫酸鹽熱催化三氯乙烯的影響. 國立成功大學環境工程研究所, 台南, 2005.
60.	Fu, F.; Wang, Q.; Tang, B., Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials 2010, 174, (1-3), 17-22.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信