§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0108201914261000
DOI 10.6846/TKU.2019.00033
論文名稱(中文) 2-芳香族取代吡啶的合成研究
論文名稱(英文) Research on the synthesis of 2-aryl pyridines
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 林資熹
研究生(英文) TZU-HSI LIN
學號 607160073
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-04
論文頁數 60頁
口試委員 指導教授 - 李世元
委員 - 王伯昌
委員 - 李世元
委員 - 林志成
關鍵字(中) 巴比艾爾反應
一鍋化
交叉偶聯
2-芳香族吡啶
關鍵字(英) Barbier Reaction
One-pot
Cross coupling
2-Aryl pyridines
第三語言關鍵字
學科別分類
中文摘要
2-芳香基吡啶衍生化合物在生活中被廣泛運用,像是藥物治療上與材料上的應用。材料廣泛應用在染敏化太陽能電池和有機發光二極體上。目前合成雙芳香族化合物反應多會添加過度金屬試劑作為催化劑,使反應更容易進行。然而吡啶上的氮孤對電子沒有參與環內共振,所以可以作為配位基和金屬配位,可能抑制過度金屬催化劑,而另一反應芳香族可能因此產生自我耦合反應。為了避免發生此現象,本實驗決定採取最基本的反應型式,即是親核芳香取代反應,且為了使實驗操作方便,採取巴比艾爾反應來找出最佳反應條件,除了操作上簡便且更符合綠色化學。
英文摘要
2-Aryl pyridines are widely used in our lives as medicines or materials. 2-Aryl pyridines are often applied electro-optical material such as DSSC and OLED. Synthesis 2-aryl pyridines, transition metal as catalyst usually was added to pursue the reaction proceed easily.
However, the lone pair on nitrogen atom of pyridine does not delocalized in aromatic resonance, so it could behave as ligand to coordinate with metals, which might produce self-coupling compound faster than the expected hetero-coupling product. To avoid this homocoupling side reaction we use the reaction such as the aromatic nucleophilic substitution reaction for synthesis of 2- aryl pyridines. Therefore, we chose Barbier-type reaction to disclose the best reaction conditions for synthesizing 2-aryl pyridines, this method not only simplify the conducting procedures, but also more eco friendly.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目錄	III
圖表目錄	VI
光譜目錄	IX
第一章 緒論	1
1.2-芳香基吡啶的應用	2
1-1 2-芳香基吡啶在材料上的應用	2
1-2 2-芳香基吡啶在藥物上的應用	6
2.合成雙芳香族化合物的反應方式	7
2-1 Pd當催化劑的方法	8
(1)Heck Reaction	9
(2)Stille Reaction	11
(3)Suzuki Reaction	13
(4)Negishi Reaction	14
2-2 Ni當催化劑的方法	16
Kharasch Reaction	16
2-3 Cu當催化劑的方法	18
Ullmann Reaction	18
3.巴比艾爾型式反應(Barbier reaction)	19
3-1 巴比艾爾反應	19
3-2活化Mg的方式	20
第二章 結果與討論	22
2-1超音波在有機合成上的應用	22
2-1-1	超音波的物理與化學現象	22
2-1-2	實驗室使用的超音波裝置	24
2-2反映條件與結果	28
2-3結果討論與比較	34
第三章 實驗部分	37
A.實驗藥品	37
B.溶劑乾燥	37
C.實驗儀器	39
(1)核磁共振光譜儀( Nuclear Magnetic Resonance,NMR ):	39
(2)紫外光燈( Ultraviolet light ):	39
(3)薄層色層分析( Thin Layer Chromatography,TLC )	39
(4)管柱色層分析( Column Chromatography )	40
(5)超音波洗淨器( Cleaning bath )	40
(6) 紫外線光譜儀 ( Ultraviolet Spectroscopy; UV )	40
D.實驗步驟	41
第四章 結論	43
第五章 光譜數據	44
第六章 參考資料	56

Scheme 1-1 OLED 構造 ..................................................................... 2
Scheme 1-2 磷光材料發光原理 ........................................................ 3
Scheme 1-3 藍色磷光材料 ................................................................ 4
Scheme 1-4 綠色磷光材料 ................................................................ 5
Scheme 1-5 紅色磷光材料 ................................................................ 5
Scheme 1-6 染敏太陽能電池的有機染料分子[6] .............................. 6
Scheme 1-7 具抗菌性的銥錯合物..................................................... 6
Scheme 1-8 Pd 當催化劑時的反應機制 ........................................... 8
Scheme 1-9 Heck reaction 的基本反應型態 .................................. 9
Scheme 1-10 Heck reaction 的反應例子 ........................................ 9
Scheme 1-11 Heck Reaction Mechanism ................................... 10
Scheme 1-12 Stille Reaction 基本反應型態 ................................. 11
Scheme 1-13 Stille Reaction 反應例子 ......................................... 11
Scheme 1-14 Stille Coupling Mechanism .................................. 12
Scheme 1-15 Suzuki Coupling 基本反應型態 ............................. 13
Scheme 1-16 Suzuki Coupling Reaction Mechanism .............. 13
Scheme 1-17 Suzuki Coupling 反應例子 ..................................... 14
Scheme 1-18 Negishi coupling 的基本反應型態 ........................ 14
Scheme 1-19 Negishi coupling Reaction Mechanism ............. 15
Scheme 1-20 Negishi coupling 的反應例子 ................................ 15
Scheme 1-21 Kharasch coupling 的基本反應型態 ..................... 16
Scheme 1-22 Kharasch coupling 的反應例子 ............................. 16
Scheme 1-23 Kharasch coupling Reaction Mechanism .......... 17
Scheme 1-24 Kharasch coupling 的基本反應型態 ..................... 18
Scheme 1-25 Ullmann coupling Reaction Mechanism ........... 18
Scheme 1-26 Kharasch coupling 的反應例子 ............................. 19
Scheme 1-27 Barbier reaction 的基本反應型態 .......................... 19
Scheme 1-28 ........................................................................................ 20
Scheme 1-29 ........................................................................................ 20
Scheme 2-1 裝置圖 .......................................................................... 25
Scheme 2-2 鋰的超音波巴比艾爾型式反應 ................................... 25
Scheme 2-3 加入CuI 催化劑鋰的超音波巴比艾爾型式反應 ....... 25
Scheme 2-4 超音波誘導巴比艾爾型式反應製備有機錫化合物 ... 26
Scheme 2-5 .......................................................................................... 27

Table 1 ............................................................................................................ 28
Table 2 ............................................................................................................ 30
Table 3 ............................................................................................................ 31
Table 4 ............................................................................................................ 32
Table 5 ............................................................................................................ 32
Table 6 ............................................................................................................ 33
Table 7 ............................................................................................................ 34
Table 8 ............................................................................................................ 36
參考文獻
[1] Tokito, S. Appl. Phys. Lett. 2003, 83, 569.
[2] Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R. Appl. Phys. Lett. 2003, 83, 3818.
[3] S.‐J. Yeh  M.‐F. Wu  C.‐T. Chen. Adv. Mater.2004,01,373
[4] Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455.
[5] Adachi, C.; Baldo, M. A.; Forrest , S. R. Appl. Phys. Lett. 2001, 78, 1622.
[6] Alessandro Sinopolia, Christopher J.Woodb, Elizabeth A.Gibson, Paul I.P.Elliott. dyepig.2017.01.011
[7] Lihua Lu, Li-Juan Liu, Wei-chieh Chao, Hai-Jing Zhong, Modi Wang, Xiu-Ping Chen, Jin-Jian Lu, Ruei-nian Li, Dik-Lung Ma & Chung-Hang Leung. Srep.2015,14,544
[8] J. Corbet, G. Mignani, Chem. Rev., 2006, 106, 2651.
[9] N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.
[10] R. FHeck, J P. Nolley, Org Chem., 1972, 37, 2320.
[11] Armin de Mcijcre, Frank E. Meyer, Angewandte Chemie International Edition in English. 1995, 33. 2379
[12] D. Milstein, JK Stille, J. Am. Chem Soc., 1978, 100, 3636.
[13] W. Su. S.Urgaonkar, PAMcLaughılin, JG Verkade, J. Am. Chem  Soc, 2004, /26, 16433
[14] J.Li, Y.Liang, D. Wang. W. Lin, Y. Xie, D. Yin,.  Org Chem, 20005, 70, 2832.
[15] N. Miyaura, K. Yamada, A. Suzaiki, Tetruhedron ieit, 1979, 20, 3437.
[16] C. Song, Y. Ma, Q. Chai, C. Ma. W.  Jiang, MB Andrus, Tetruhedron, 2005 61, 7438.
[17] CM So, CP Lau, FY Kwong, Org. Lett., 2007, 9, 2795 2798. 24.
[18] Lihua Lu1, Li-Juan Liu, Wei-chieh Chao, Hai-Jing Zhong, Modi Wang, Xiu-Ping Chen,Jin-Jian Lu, Ruei-nian Li, Dik-Lung Ma & Chung-Hang Leung .srep2015,14,544
[19] S. Baba, E. Negishi, .I. Am. Chem. Sac., 1976, 98, 6729.
[20] J.E. Milne, S.L. Buchwald, J. Am. Chem. Soc, 2004, 126,3028.
[21] S. Huo, Org. Lett., 2003, 5, 423
[22] S.P. Stanforth, Tetrahedron, 1998, 54. 263
[23] L. N Pridgen, S S. Jones, J Or Chem. 1982 47.1590
[24] Alonso, D. A.; Najera, C. F.; Pacheco, M. C. Org. Lett. 2000, 2, 1823
[25] Fanta, P. E. Synthesis, 1974, 10, 9.
[26] Hassan, J.; Penalva, V.; Lavenot, L.; Gozzi, C.; Lemaire, M.
Tetrahedron, 1998, 54, 13793.
[27] C.Blomberg, F.A. Hartog, Syrthesis, 1977, 18.
[28] J.L. Luche, JC Damiano, J Am. Chem. Sor, 1980. 102, 7926.
[29] T. Mukaiyanna, T Harada Chem. Let, 1981, 10, 1527
[30] T. Shono, M. Ishiline, K. Kashirura, Chemistry leiters, 1990, 19, 449
[31] Y. Naruta, Y. Nishigaichi, K. Ma uyama, Chem. Let., 1986. 1857
[32] G. Mollc,  P. Bauer, J Am. Chem. Soc, 1982, 104, 3181
[33] D.E. Pearson, D. Cowan D. Beckler, J. Org. Chem, 1959, 24, 504
[34] Ley, S. V.; Caroline, M. R. Low. Ultrasonic in Synthesis
Springer-Verlaag: Berlin Heidelberg, 1989
[35] Richards, W. T.; Loomisy, A. L. J. Am. Chem. Soc. 1927, 49, 3086
[36] Luche, J.-L. Sonochemistry, from experiment to theoretical onsiderations, Advances in Sonochemistry, ed. T. J. Mason, JAI Press, London, 1992, Vol. 3, p. 85.
[37] Fujikawa, S.; Akamatsu, T. J. Fluid. Mech. 1980, 97, 481
[38] Nakamura, E.; Machii, D.; Inubishi, T. J. Am. Chem. Soc. 1989,
111, 6849
[39] Luche, J.-L.; Damanio, J. C. J. Am. Chem. Soc. 1980, 102, 7926
[40] Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Chem. Lett. 1986, 1857
[41] Lee, A. S.-Y.; Dai, W.-C. Tetrahedron Lett. 1996, 37, 495
[42] Lee, A. S.-Y.; Dai, W.-C. Tetrahedron 1997, 53, 859
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信