§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0108201613372800
DOI 10.6846/TKU.2016.00030
論文名稱(中文) Bacillus mycoides TKU039 發酵烏賊軟骨所生產幾丁聚醣酶之分離與定性
論文名稱(英文) Isolation and characteristic of chitosanases produced by Bacillus mycoides TKU039 fermented with squid pen
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 陳俊谷
研究生(英文) Chun-Ku Chen
學號 603160374
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-07
論文頁數 66頁
口試委員 指導教授 - 王三郎
委員 - 郭曜豪
委員 - 梁慈雯
關鍵字(中) Bacillus mycoides
幾丁聚醣酶
烏賊軟骨粉
幾丁寡糖
關鍵字(英) Bacillus mycoides
chitosanase
squid pen powder
oligomer
第三語言關鍵字
學科別分類
中文摘要
實驗菌株TKU039 係篩選自新北市林口山區紅土之幾丁聚醣酶生產菌,屬於格蘭氏陽性,蕈狀孢芽桿菌,經由16S rDNA 部分鹼基序列分析與NCBI/BLAST資料庫比對,得知此菌株最接近Bacillus 屬,經由API鑑定系統判定為Bacillus mycoides,鑑定率為88.5 %。以含有1%烏賊軟骨粉、0.1% K2HPO4、0.05% MgSO4 ·7H2O之150 mL液態培養基,於37°C中搖瓶(150 rpm)培養5天可得較高幾丁聚醣酶活性(0.65U)。
依較佳培養條件培養所得之發酵液,經離心、硫酸銨沉澱、DEAE-Sepharose及Macro-Prep® DEAE Cartridge陰離子交換層析等步驟,純化度(61.7倍)以及活性回收率(4.2%),純化後經SDS PAGE電泳測得分子量約為41 kDa之幾丁聚醣酶。此幾丁聚醣酶的最適反應pH為6、pH安定性為pH4~pH10 、最適反應溫度為50°C、於50°C以下皆具熱安定性。
此幾丁聚醣酶水解WSC後之寡醣經過MALDI-TOF-MS分析得知其組成多為3~6醣,並以6醣含量最多。
英文摘要
Chitosan has been more popular in recent years due to its good bio-compatibility, low toxicity and rarely no allergic reaction to human body. Chitosan also has other bioactivity like reduce blood pressure, lower cholesterol, increase immunity, and its antibacterial property can be used in many clinical applications. For the best resource of Chitin/Chitosan we extracted from the seafood wastes (squid pens, shrimp or crab shells),which is abundant of polysaccharides, and glucosamine that we can use enzyme hydrolysis to achieve it. In traditional way, using a lot of chemical to receive chitosan and its oligomer, but in nowadays, we use the natural way, chitosanase bacteria strain TKU039 identified as Bacillus sp. from the soil in New Taipei City Linkou mountain. TKU039 was culture in medium with the squid pen powder (SPP) and shrimp powder (SP).The SPP medium was found most suitable with 1.0% SPP as a sole carbon/nitrogen source optimized under cultured at 37°C with 150 rpm for 5 days in 150 mL of medium containing 1% SPP, 0.1% K2HPO4 and 0.05 % MgSO4·7H2O.
第三語言摘要
論文目次
目錄

中文摘要	Ⅰ
中文摘要	Ⅱ
目錄	Ⅲ
圖目錄	Ⅶ
表目錄	Ⅸ
第一章 緒論	1
第二章 文獻回顧	2
  2.1實驗菌種Bacillus mycoides之簡介	2
  2.2幾丁質及幾丁聚醣	2
  2.3幾丁質酶及幾丁聚醣酶	4
  2.4 N-乙醯幾丁寡醣及幾丁寡醣	6 
第三章 材料與方法	7
  3.1 實驗菌株	7
  3.2實驗材料	7
  3.3實驗儀器	8
  3.4實驗菌株之篩選	9  
  3.5幾丁聚醣酶之活性測定	9   
  3.6 幾丁聚醣酶較適生產條件探討	10
3.6.1碳/氮源種類	10
    3.6.2培養濃度	10
    3.6.3培養體積	10
    3.6.4培養溫度	10
  3.7 幾丁聚醣酶之分離純化	11
    3.7.1 粗酵素液之製備	11
    3.7.2 陰離子交換層析	11
  3.8 蛋白質電泳分析	12
    3.8.1 蛋白質電泳分析	12
    3.8.2 幾丁聚醣酶胜肽質譜鑑定	12
  3.9 酵素之特性分析	13
    3.9.1 酵素最適反應溫度	13
    3.9.2 酵素熱安定性	13
    3.9.3 酵素最適反應pH	13
    3.9.4 酵素pH安定性	14
    3.9.5 介面活性劑對酵素活性之影響	14
    3.9.6 酵素之基質特異性	14
  3.10 幾丁聚醣酶水解基質及寡醣分析	15
    3.10.1 基質水解	15
    3.10.2 還原糖量之測定	15
    3.10.3 總糖量之測定	16
    3.10.4 N-乙醯幾丁寡醣製備	16
    3.10.5幾丁寡醣之組成分析	16
    3.10.6 MALDI-TOF-MS分析寡醣	17 
第四章 結果與討論	18
  4.1幾丁聚醣酶生產菌之篩選與鑑定	18
  4.2酵素較適生產條件探討	21
    4.2.1 較適碳/氮源種類	21
    4.2.2 較適培養液濃度	21
    4.2.3 較適培養液體積	21
    4.2.4 較適培養液溫度	22
    4.2.5 較適培養條件結果與比較	24
  4.3 幾丁聚醣酶之分離純化	27
    4.3.1 粗酵素液之製備	28
    4.3.2離子交換樹脂層析(Ⅰ)	28
    4.3.3離子交換樹脂層析(Ⅱ)	29
    4.3.4分離純化之綜合結果	31
  4.4 幾丁聚醣酶分子量之測定與鑑定	32
    4.4.1 SDS-PAGE	32
    4.4.2 幾丁聚醣酶胜肽質譜鑑定	32
  4.5 幾丁聚醣酶之特性分析	35
    4.5.1 最適反應溫度及熱安定性	35
    4.5.2 最適pH及pH安定性	37
    4.5.3 介面活性劑對幾丁聚醣酶活性之影響	37
    4.5.4 幾丁聚醣酶之基質特異性	39
    4.5.5 基質特異性之比較	40
    4.5.6 綜合比較	40
  4.6 水解基質之探討	43
    4.6.1 還原糖及總糖含量之分析	43
    4.6.2 HPLC進行幾丁寡醣之組成分析	43 
    4.6.3 MALDI-TOF-MS進行幾丁寡醣之組成分析	49 
第五章 結論	54
第六章 參考文獻	55

圖目錄

圖2.1 幾丁質跟幾丁聚醣之結構	3
圖2.2 結構圖(a)幾丁聚醣 (b)幾丁質中GlcNAc和GlcN分布 (c)部分去乙醯化幾丁聚醣 (d)全部去乙醯化幾丁聚醣	4
圖4.1 Bacillus mycoides TKU039之顯微鏡照片	18
圖4.2 B. mycoides TKU039之16S rDNA部分鹼基序列及API試驗分析結果	19
圖4.3 不同碳/氮源對B. mycoides TKU039生產幾丁聚醣酶影響	21
圖4.4 不同濃度對B. mycoides TKU039生產幾丁聚醣酶影響	22
圖4.5 不同體積對B. mycoides TKU039生產幾丁聚醣酶影響	23
圖4.6 不同溫度對B. mycoides TKU039生產幾丁聚醣酶影響	24
圖4.7 B. mycoides TKU039所生產酵素之純化流程圖	27
圖4.8 B. mycoides TKU039 幾丁聚醣酶之DEAE-Sepharose CL-6B層析圖譜	29
圖4.9 B. mycoides TKU039 幾丁聚醣酶之Macro-Prep® DEAE Cartridge層析圖譜	30
圖4.10 B. mycoides TKU039幾丁聚醣酶之純化SDS-PAGE圖	33
圖4.11 幾丁聚醣酶之最適反應溫度及熱安定性	36
圖4.12 幾丁聚醣酶之最適反應pH值及pH安定性	37
圖4.13水溶性幾丁聚醣經B. mycoides TKU039 粗酵素液水解不同時間所得總糖及還原醣含量	43
圖4.14 WSC經B.mycoides TKU039粗酵素液水解不同時間所得幾丁聚醣酶之HPLC分析圖(a)標準品(b)水解8小時	45
圖4.15 WSC經B.mycoides TKU039粗酵素液水解不同時間所得幾丁聚醣酶之HPLC分析圖(a) 水解一天(b)水解兩天	46
圖4.16 WSC經B.mycoides TKU039粗酵素液水解不同時間所得幾丁聚醣酶之HPLC分析圖(a)水解三天(b)水解四天	47
圖4.17 WSC經B.mycoides TKU039粗酵素液水解不同時間所得幾丁聚醣酶之HPLC分析圖-水解五天	48
圖4.18水溶性幾丁聚醣經B. mycoides TKU039粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖	50
圖4.19水溶性幾丁聚醣經B. mycoides TKU039粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖	51
圖4.20水溶性幾丁聚醣經B. mycoides TKU039粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖	52


表目錄

表2.1 不同微生物之幾丁聚醣特性5 
表3.1 DNS試劑組成15 
表4.1 API鑑定分析結果19 
表4.2 B. mycoides TKU038 (左) & B. mycoides TKU039 (右) API鑑定分析結果比較20 
表4.3 B. mycoides TKU039酵素較適生產條件25 
表4.4 含幾丁質水產廢棄物為唯一碳/氮源之幾丁聚醣酶生產菌之較適培養條件比較26 
表4.5 B. mycoides TKU039幾丁聚醣酶之純化總表31 
表4.6 B. mycoides TKU039幾丁聚醣酶胜肽質譜鑑定結果34 
表4.7界面活性劑對B. mycoides TKU039所產幾丁聚醣酶影響38 
表4.8 B. mycoides TKU039所產之幾丁聚醣酶之基質特異性39 
表4.9基質特異性之比較41
表4.10 微生物來源之幾丁聚醣酶之特性比較42 
表4.11 水溶性幾丁聚醣經B. mycoides TKU039粗酵素液水解不同時間之MALDI-TOF-MS 幾丁寡醣組成分析53
參考文獻
Dolphen R, Sakkayawong N, Thiravetyan P, Nakbanpote W (2007) Adsorption of Reactive Red 141 from wastewater onto modified chitin. Journal of Hazardous Materials, 145:250-255

Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F (1956) colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28:350-356

Fitches E, Wilkinson H, Bell H, Bown DP, Gatehouse JA, Edwards JP (2004) Cloning expression and functional characterization of chitinase from larvae of tomato moth (Lacanobia oleracea) : a demonstration of the insecticidal activity of insect chitinase. Insect Biochemistry and Molecular Biology, 34:1037-1050

Franca EF, Lins RD, Freitas LC, Straatsma TP (2008) Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation, 4:2141-2149

Gao XA, Ju WT, Jung WJ, Park RD (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers, 72:513-520

Ge L, Zhang H, Chen K, Ma L, Xu Z (2010) Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chemistry, 120:490-495

Ghaouth AE, Arul J, Grenier J, Asselin A (1992) Effect of chitosan and other polyions on chitin deacetylase in Rhizopus stolonifer. Experimental Mycology, 16:173-177

Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59:15-32

Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology, 18:117-131

Hirano S (1999) Chitin and chitosan as novel biotechnological materials. Polymer International, 48:732-734

Imoto T and Yagishita K (1971) A simple activity measurement by lysozyme. Agricultural and Biological Chemistry, 35:1154-1156

Jiang X, Chen D, Chen L, Yang G, Zou S (2012) Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydrate Research, 355:40-44

Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8:276-281

Kim HB ,An CS (2002) Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellate. Molecular Plant-Microbe Interactions, 15:209-215

Kong CS, Kim JA, Ahn B, Byun HG, Kim SK (2010) Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochemistry, 45:179-186

Kurita K (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine Biotechnology, 8:203-226

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685

Lee YS, Park I H, Yoo JS, Chung SY, Lee YC, Cho YS, Ahn SC, Kim CM, Choi YL (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresource Technology, 98:2734-2741

Lei H, Zhao H, Zhao M (2013) Proteases supplementation to high gravity worts enhances fermentation performance of brewer’s yeast. Biochemical Engineering Journal 77:1-6

Liang TW, Chen YY, Pan PS, Wang SL (2014) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules, 63:8-14

Liang TW, Hsieh JL, Wang SL (2012) Production and purification of a protease, a chitosanase, and chitinoligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research, 362:38-46

Liang TW, Kuo YH, Wu PC, Wang CL, Dzung NA, Wang SL (2010) Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia Marcescens TKU019. Journal of the Chinese Chemical Society, 57:857-863

Liang TW, Liu CP, Wu C, Wang SL (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydrate Polymers, 92:2141-2148

Liu CL, Lan CY, Fu CC, Juang RS (2014) Production of hexaoligochitin from colloidal chitin using a chitinasefrom Aeromonas schubertii. International Journal of Biological Macromolecules, 69:59-63

Liu CL, Lin TH, Juang RS (2013) Optimization of recombinant hexaoligochitin-producing chitinaseproduction with response surface methodology. International Journal of Biological Macromolecules, 62:518-522

Liu N, Chen X-G, Park H-Jb, Liu C-G, Liu C-S, Meng X-H, Yu L-J (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64:60-65

Liu YL, Jiang S, Ke ZM, Wu HS, Chi CW, Guo ZY (2009) Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohydrate Research, 344:815-819

Lin YW, Hsiao YC, Chiang BH (2009) Production of high degree polymerized chitooligosaccharides in a membrane reactor using purified chitosanase from Bacillus cereus. Food Research International, 42:1355-1361

McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Stevenson J (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The Lancet, 370: 1560-1567

Mellegård H, Strand SP, Christensen BE, Granum PE, Hardy SP (2011) Antibacterial activity of chemically defined chitosans: Influence of molecular weight, degree of acetylation and test organism. International Journal of Food Microbiology, 148:48-54

Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90:759-769


Mikkelsen H, Larsen JC, Tarding F (1978) Hypersensitivity reactions to food colours with special reference to the natural colour annatto extract (butter colour). Archives of Toxicology, 1:141-143

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31:426-428

NavinChandran M, Iyapparaj P, Moovendhan S, Ramasubburayan R, Prakash S, Immanuel G, Palavesam A (2014) Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish & Shellfish Immunology, 36:38-45

Nguyen AD, Huang CC, Liang TW, Nguyen VB, Pan PS, Wang SL (2014) Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of theenzyme activators. Carbohydrate Polymers, 108:331-337

Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technology 98:1238-1245

Patil NS, Waghmare SR, Jadhav JP (2013) Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochemistry, 48:176-183

Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters in Applied Microbiology, 25:284-288

Pradeep GC, Choi YH, Choi YS, Suh SE, Seong JH, Cho SS, Bae M-S, Yoo JC (2014) An extremely alkaline novel chitinase from Streptomyces sp. CS495. Process Biochemistry, 49:223-229

Raval VH, Pillai S, Rawal CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stableserine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochemistry, 49:955-962

Ravi Kumar MNV (2000) A review of chitin and chitosan applications. Reactive and Functional Polymer, 46:1-27

Rinaudo M (2006) Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31:603-632

Saima, Kuddus M, Roohi, Ahmad IZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11:39-46

Sakai K, Yokota A, Kurokawa H, Wakayama M, Moriguchi M (1998) Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Applied and Environmental Microbiology, 64:3397-3402

Seo DJ, Lee JH, Song YS, Park RD, Jung WJ (2014) Expression patterns of chitinase and chitosanase produced from Bacillus cereus in suppression of phytopathogen. Microbial Pathogenesis, 73:31-36

Shahidi F, Arachchi JKV, JeonY-J (1999) Food applications of chitin and chitosans. Trends in Food Science & Technology 10:37-51

Sharma OP,Bhat TK (2009) DPPH antioxidant assay revisited. Food Chemistry, 113:1202-1205

Shen CR, Chen YS, Yang CJ, Chen JK, Liu CL (2010) Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. Journal of Biomolecular Screening, 15:213-217

Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research, 342:2423-2429

Su C, Wang D, Yao L, Yu Z (2006) Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain S65. Journal of Agricultural and Food Chemistry, 54:4208-4214

Sundararajan S, Kannan CN,Chittibabu S (2011) Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. Journal of Bioscience and Bioengineering, 111:128-133

Sun Y, Liu W, Han B, Zhang J, Liu B (2006) Purification and characterization of two types of chitosanase from a Microbacterium sp.Biotechnology Letters, 28:1393-1399

Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 151:403-408

Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chemical & Pharmaceutical Bulletin, 36:784-90

Todd EW (1949) Quantitative studies on the total plasmin and the trypsin inhibitor of human blood serum. Journal of Experimental Medicine, 39:295-308

Vaz M, Hogg T, Couto JA (2012) The antimicrobial effect of wine on Bacillus cereus in simulated gastro-intestinal conditions. Food Control, 28:230-236

Wang CL, Su JW, Liang TW, Nguyen AD, Wang SL (2014) Production, purification and characterisation of a chitosanase from Bacillus cereus. Research on Chemical Intermediates, 40:2237-2248

Wang J, Zhou W, Yuan H, Wang Y (2008) Characterization of a novel fungal chitosanase Csn2 from Gongronella sp. JG. Carbohydrate Research, 343:2583-2588

Wang SL, Kao TY, Wang CL, Yen YH, Chern MK, Chen YH (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology, 39:724-731

Wang SL, Chen SJ, Wang CL (2008a) Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research, 343:1171-1179

Wang SL, Peng JH, Liang TW, Liu KC (2008b) Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research, 343:1316-1323

Wang SL, Yeh PY (2008c) Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry, 43: 132-138

Wang SL, Chao CH, Liang TW, Chen CC (2009a) Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11:334-344

Wang SL, Chen TR, Liang TW, Wu PC (2009b) Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal, 48:111-117

Wang SL, Liou JY, Liang TW, Liu KC (2009c) Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochemistry, 44:854-861

Wang SL, Chang TJ, Liang TW (2010a) Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 21:321-333

Wang SL, Li JY, Liang TW, Hsieh JL, Tseng WN (2010b) Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology, 20:117-126

Wang SL, Lin BS, Liang TW, Wang CL, Wu PC, Liu JR (2010c) Purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology, 20:1001-1005

Wang SL, Tseng WN, Liang TW (2011) Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation, 22: 939-948

Wang SL, Liu CP, Liang TW (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90: 1305-1313

Wan Ngah WS, Ariff NFM, Hanafiah MAKM (2010) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air, and Soil Pollution, 206:225-236

Wu SJ, Pan SK, Wang HB, Wu JH (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity.
International Journal of Biological Macromolecules, 62:348-351

Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresource Technology, 100:3459-3464

Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75: 15-21

Zhang CM, Yu SH, Zhang LS, Zhao ZY, Dong LL (2014) Effects of several acetylated chitooligosaccharides on antioxidation, antiglycation and NO generation in erythrocyte. Bioorganic & Medicinal Chemistry Letters, In Press.

Zhou W, Yuan H, Wang J, Yao J (2008) Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Letters in Applied Microbiology, 46:49-54
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信