淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0108201611175400
中文論文名稱 應用都卜勒效應於十字路口車輛碰撞預警系統
英文論文名稱 Study by Utilizing Doppler Effect in the Design of Pre- Collision Warning System for Vehicles at the Crossroad
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 李銘航
研究生英文姓名 Ming-Hang Lee
學號 603440214
學位類別 碩士
語文別 中文
口試日期 2016-06-01
論文頁數 54頁
口試委員 指導教授-李揚漢
委員-許獻聰
委員-蘇木春
中文關鍵字 都卜勒效應  V2V  預警系統  十字路口 
英文關鍵字 Doppler Effect  V2V  Pre- Collision Warning System  Crossroad 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文應用都卜勒效應於車與車之間通訊(V2V),偵測可能與我們發生碰撞危險的車輛,運用都卜勒效應有快速得到對方車輛行為與訊息,且不需要視覺觀測。過去車輛在地導航目的地,是經由GPS來定位導航,收到當時的資訊已與實際情形有所差異,無法精確定位目標物位置,只能作為輔助功能,對於車輛本身安全,並沒有任何保障。而第五代行動通訊即將來臨,渴望克服許多問題,其中包含智慧控制系統和資料訊號時間延遲,將使精確定位技術進一步提升。如果車輛配備都卜勒雷達可預先評估與其他車輛碰撞情形,在發生碰撞前提出警訊給駕駛員,讓駕駛提前作出更明確安全的反應與決策。我們運用都卜勒雷達的原因是車輛之間能即時傳遞資訊,如:距離、相對速度、等…,所以本論文目的是在十字路口找出沒有剎車且將會與我們發生碰撞可能的車輛。
英文摘要 In this report, the Doppler Effect is applied to vehicle-to-vehicle (V2V) communication to identify the vehicle that may have the most dangerous impact on us by utilizing the results of Doppler effect to fast get other vehicles behavior and their sent messages without implementing any visual observations. In the past a vehicle navigates the location of its destination via GPS and at the time when we receive the information, sent from a moving object, to estimate the object’s location that would be different from the object actual location consequently we could not use GPS to precisely locate a moving object position but only to use it as an assistant apparatus to provide a secondary location information. Also the use of GPS could not provide and guarantee the safety of a vehicle. The emergence of fifth generation of mobile communications (5G) prompts people to eagerly exploit the new system to overcome many problems existing in the current communication systems such as the design of a wisdom control system and the data signal transmission time delay so as to enhance the positioning precision in current available positioning technology. If a vehicle is equipped with Doppler radar then it can assess in advance the possible collision situations incurred from other vehicles, and let the driver consider the situation to make proper decision. The reason to use the Doppler radar is that it enables, the information such as distance, relative speed and vehicle’s status etc. can be instantly transferred among vehicles. The main task of this report is to identify the vehicle at the crossroad that is still maintaining its speed without making de-acceleration that could possibly collide with us.
論文目次 目錄

致謝 I
論文提要內容: III
Abstract: V
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 章節介紹 2
第二章 車與車之無線通訊模型 3
2.1 車與車之無線通訊模型 3
2.2 都卜勒效應 6
第三章 車輛間車道偏移碰撞理論 12
3.1 對向車行駛方向無偏離 13
3.2 對向車行駛方向偏離 16
3.3 對向車行駛方向偏離碰撞 19
3.4 車輛碰撞的判斷流程 22
第四章 十字路口碰撞情境之模擬 26
4.1 十字路口即時剎車之安全情境模擬 28
4.2 十字路口定速之碰撞情境模擬 34
第五章 模擬結果與探討 40
5.1 實驗結果 40
5.2 實驗探討 42
第六章 結論未來展望 45
參考文獻 50


圖目錄
圖 2.1.1 V2V概念圖[1] 3
圖 2.2.1 都卜勒效應之發射源S移動 7
圖 2.2.2 都卜勒效應之接收者O移動 8
圖 2.2.3 靜態都卜勒頻移關係 10
圖 2.2.4 動態都卜勒頻移關係 11
圖 3.1.1 對向車道車輛無偏離 14
圖 3.1.2 對向車道車輛無偏離之路徑圖 15
圖 3.1.3 對向車道車輛無偏離之Doppler Shift 15
圖 3.1.4 對向車道車輛無偏離之Doppler Shift斜率變異 16
圖 3.2.1 對向車道車輛方向偏離 17
圖 3.2.2 對向車道車輛偏離之路徑圖 18
圖 3.2.3 對向車道車輛偏離之Doppler Shift 18
圖 3.2.4 對向車道車輛偏離之Doppler Shift斜率變異 19
圖 3.3.1 對向車道車輛偏離撞擊 20
圖 3.3.2 對向車道車輛偏離撞擊之路徑圖 21
圖 3.3.3 對向車道車輛偏離撞擊之Doppler Shift 21
圖 3.3.4 對向車道車輛偏離撞擊之Doppler Shift斜率變異 22
圖 3.4.1 碰撞危險判斷流程1 23
圖 3.4.2 碰撞危險判斷流程2 24
圖 3.4.1 十字路口情境示意圖1 [25] 27
圖 3.4.2 十字路口情境示意圖2 27
圖 4.1.1 1秒後左邊來車Car 6剎車減速之路徑圖 29
圖 4.1.2 1秒後左邊來車Car 6剎車減速之Doppler Shift 30
圖 4.1.3 1秒後左邊來車Car 6剎車減速之Doppler Shift 30
圖 4.1.4 1秒利用碰撞危險判斷流程1的車輛 31
圖 4.1.5 1秒利用碰撞危險判斷流程2的車輛 31
圖 4.1.6 2.14秒後右邊來車Car 4剎車減速之路徑圖 32
圖 4.1.7 2.14秒後右邊來車Car 4剎車減速之Doppler Shift 32
圖 4.1.8 2.14秒利用碰撞危險判斷流程1的車輛 33
圖 4.1.9 2.14秒利用碰撞危險判斷流程2的車輛 33
圖 4.2.1 1秒後與左邊來車Car 6撞擊之路徑圖 35
圖 4.2.2 1秒後與左邊來車Car 6撞擊之Doppler Shift 35
圖 4.2.3 1秒後與左邊來車Car 6撞擊之Doppler Shift 36
圖 4.2.4 1秒內利用碰撞危險判斷流程1的車輛 36
圖 4.2.5 1秒內利用碰撞危險判斷流程2的車輛 37
圖 4.2.6 2.14秒後與右邊來車Car 4撞擊之路徑圖 37
圖 4.2.7 2.14秒後與右邊來車Car 4撞擊之Doppler Shift 38
圖 4.2.8 2.14秒內利用碰撞危險判斷流程1的車輛 38
圖 4.2.9 2.14秒內利用碰撞危險判斷流程2的車輛 39
圖 5.2.1 碰撞發生路徑圖1 42
圖 5.2.2 接收和發送角度變化圖1 43
圖 5.2.3 碰撞發生路徑圖2 43
圖 5.2.4 接收和發送角度變化圖2 44
圖 5.2.1 等三角關係 46
圖 5.2.2 β角度換算流程 47
圖 5.2.3 兩向量反推夾角 48
圖 5.2.4 多天線偵測 49
圖 5.2.5 雙天線偵測示意圖 49


表目錄
表 3.4.1 車道偏離結果表 22
表 4.1.1 即時剎車之安全情境模擬之車輛行駛行為 28
表 4.2.1 即時剎車之安全情境模擬之車輛行駛行為 34
表 5.1.1 十字路口安全情境模擬和碰撞情境模擬比較 40
表 5.1.2 碰撞時間點比較 41


參考文獻 參考文獻
[1] V2V: What are vehicle-to-vehicle communications and how do they work? http://www.extremetech.com/extreme/176093-v2v-what-are-vehicle-to-vehicle-communications-and-how-does-it-work
[2] B. Gallagher, "First Development of a 5.9GHz DSRC On-Vehicle Coverage Capability," Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd, Boston, MA, 2015, pp. 1-5.
[3] L. Altoaimy, I. Mahgoub and M. Rathod, "Weighted localization in Vehicular Ad Hoc Networks using vehicle-to-vehicle communication," 2014 Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, 2014, pp. 1-5.
[4] H. Schumacher and H. Tchouankem, "Highway propagation modeling in VANETS and its impact on performance evaluation," Wireless On-demand Network Systems and Services (WONS), 2013 10th Annual Conference on, Banff, AB, 2013, pp. 178-185.
[5] D. Tian, H. Luo, J. Zhou, Y. Wang, G. Yu and HaiyingXia, "A Self-Adaptive V2V Communication System with DSRC," Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, Beijing, 2013, pp. 1528-1532.
[6] Lin Cheng, B. Henty, D. D. Stancil, Fan Bai and Priyantha Mudalige, "A fully mobile, GPS enabled, vehicle-to-vehicle measurement platform for characterization of the 5.9 GHz DSRC channel," 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, 2007, pp. 2005-2008.
[7] S. Das and M. Saha, "Position verification in vehicular communications," 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2013, pp. 1-2.
[8] L. Cheng and A. Saraf, "Simulating Doppler components in the vehicle-to-vehicle communication channel," 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, 2010, pp. 637-640.
[9] N. Alam, A. T. Balaie and A. G. Dempster, "Dynamic Path Loss Exponent and Distance Estimation in a Vehicular Network Using Doppler Effect and Received Signal Strength," Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, Ottawa, ON, 2010, pp. 1-5.
[10] B. Kihei, J. A. Copeland and Y. Chang, "Doppler domain localization for collision avoidance in VANETs by using omnidirectional antennas," 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, 2014, pp. 331-337.
[11] A. Paier, L. Bernado, J. Karedal, O. Klemp and A. Kwoczek, "Overview of Vehicle-to-Vehicle Radio Channel Measurements for Collision Avoidance Applications," Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, Taipei, 2010, pp. 1-5.
[12] A. Al Masud, M. N. I. Mondal and K. M. Ahmed, "Vehicular communication system for vehicle safety using RFID," Communications (MICC), 2009 IEEE 9th Malaysia International Conference on, Kuala Lumpur, 2009, pp. 697-702.
[13] Q. Wang, B. Ai, Y. Li, Z. Zhong and X. Cheng, "Time-variant characteristics for Vehicle-to-Vehicle communications in highway scenario," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015, pp. 99-100.
[14] X. Zhao, Qingdong Han, Suiyan Geng and Jingchun Li, "V2V Doppler spectra for geometry-based scattering models with moving scatterers," 2015 IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, 2015, pp. 752-756.
[15] N. Alam, A. T. Balaei and A. G. Dempster, "An Instantaneous Lane-Level Positioning Using DSRC Carrier Frequency Offset," in IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1566-1575, Dec. 2012.
[16] N. Alam, A. Kealy and A. G. Dempster, "An INS-Aided Tight Integration Approach for Relative Positioning Enhancement in VANETs," in IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1992-1996, Dec. 2013.
[17] X. Yang, L. Liu, N. H. Vaidya and F. Zhao, "A vehicle-to-vehicle communication protocol for cooperative collision warning," Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual International Conference on, 2004, pp. 114-123.
[18] U. D. Gandhi, A. Singh, A. Mukherjee and A. Chandak, "Smart vehicle connectivity for safety applications," Optimization, Reliabilty, and Information Technology (ICROIT), 2014 International Conference on, Faridabad, 2014, pp. 262-266.
[19] O. Onubogu, K. Ziri-Castro, D. Jayalath, K. Ansari and H. Suzuki, "Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8 GHz," Signal Processing and Communication Systems (ICSPCS), 2014 8th International Conference on, Gold Coast, QLD, 2014, pp. 1-6.
[20] G. Khomami and P. Veeraraghavan, "Achieving a reliable V-2-V communication for safety messages," Communications (MICC), 2013 IEEE Malaysia International Conference on, Kuala Lumpur, 2013, pp. 550-555.
[21] M. G. Nilsson, D. Vlastaras, T. Abbas, B. Bergqvist and F. Tufvesson, "On multilink shadowing effects in measured V2V channels on highway," 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015, pp. 1-5.
[22] L. C. Bento, R. Parafita, S. Santos and U. Nunes, "Intelligent traffic management at intersections: Legacy mode for vehicles not equipped with V2V and V2I communications," 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, 2013, pp. 726-731.
[23] L. Conde, R. Chelim and U. Nunes, "Collaborative Vehicle Self-Localization Using Multi-GNSS Receivers and V2V/V2I Communications," 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, 2015, pp. 2525-2532.
[24] L. C. Bento, R. Parafita and U. Nunes, "Intelligent traffic management at intersections supported by V2V and V2I communications," 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, 2012, pp. 1495-1502.
[25] Vehicle-to-Vehicle Communications Could Prevent Half a Million Accidents Each Year: Report, September 9, 2014, http://www.intellimec.com/myconnectedcar/safety/vehicle-to-vehicle-communications/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信