§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0108201113373000
DOI 10.6846/TKU.2011.00020
論文名稱(中文) 行人風場之數值模擬預測與風洞試驗的比較
論文名稱(英文) Comparisons of the computational fluid dynamics and the wind tunnel experiments for pedestrian wind environments
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 林金賢
研究生(英文) Chin-Hsien Lin
學號 893330026
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2011-06-17
論文頁數 150頁
口試委員 指導教授 - 盧博堅
委員 - 方富民
委員 - 蕭葆羲
委員 - 陳俊成
委員 - 張正興
關鍵字(中) 風洞試驗
計算流體力學
行人風環境
兩棟獨立高樓
都市複雜地形
關鍵字(英) wind tunnel experiment
computational fluid dynamic
pedestrian wind environment
two isolated buildings
complex urban terrain
第三語言關鍵字
學科別分類
中文摘要
在台灣,超高樓之開發行對於周圍環境之流場的改變,因此環境影響評估作業準則中,風場(行人舒適度)應進行相關之模擬分析與風洞試驗。
本研究主要利用計算流體力學軟體(fluent 6.3)與風洞試驗進行比較。主要分成兩個部分:
(1)兩棟獨立高樓。就風洞試驗:主要使用熱膜探針與Irwin probes進行量測;數值模擬分析:使用標準紊流模式(standard κ-ε)、經修正紊流模式(renormalization Groups κ-ε)、LES (large eddy simulation)、DES(detached eddy simulation)。以DES模擬結果最好,平均風速誤差為9%,有效風速的誤差為17%。
(2)選定台中市七期重劃區。採用standard κ-ε紊流模式、RNG κ-ε紊流模式與LES紊流模式進行模擬預測。數值模擬預測與風洞試驗的結果:
(a)16個方向無因次化平均速度的數值模擬(standard κ-ε紊流模式)預測與風洞試驗之相關性(correlation)介於0.53~0.91,平均值為0.81;(b)62個數值模擬測點與風洞試驗相互比較之下,其平均誤差約為20~30%;(c)若使用西安大略大學(university of Western Ontario)舒適度評估準則[2-24][2-41],數值模擬預測與風洞試驗的趨勢是一致的,但風洞試驗的結果則較為保守;(d)LES紊流模式模擬結果會優於standard κ-ε與RNG κ-ε紊流模式且LES紊流模式的預測會較為保守;必須考慮模擬所需要的時間。(e)若使用丁育群、朱佳仁所建議的舒適度評估準則[2-41],都符合宜人的狀況,因此數值模擬預測與風洞試驗的結果變得更好;但此評估方法是較為不保守,容易造成大樓興建後會產生較高的風速,因而造成行人感受到不舒適的情形發生。
英文摘要
The scientific and technological development allowed higher and higher buildings to be constructed causing serious wind acceleration on the ground. High-rise buildings tend to change the pedestrian wind environment and caused discomfort to the pedestrians or even pose threat to their safety in this area. Therefore, the Environmental Impact Assessment Act in Taiwan and Taipei Public Space Management Practices stipulated that the wind tunnel experiments for the assessment of the pedestrian comfort must be carried out prior to the construction of the high-rise buildings.
This study utilized the computational fluid dynamics (CFD) software for simulation and prediction, and compared the results with the wind tunnel experiments. The study involved two isolated buildings and the wind field evaluation of complex terrain in cities. 
In the wind tunnel experiments, the ground level wind velocity was measured by hot-film probes and Irwin probes. In the numerical simulation analysis, the standard κ-ε turbulence model, RNG κ-ε turbulence model, LES turbulence model and DES turbulence model were adopted.
 For the two isolated buildings, the error of the mean velocity of the detached eddy simulation and the wind tunnel experiments was 9% and the error of the effective velocity was 17%.
In the complex urban terrain of the Taichung, for the steady-state of the standard κ-ε turbulence model and the wind tunnel experiments in 16 directions, the correlation coefficient ranged between 0.51 and 0.92 and the average was 0.81.The mean error of the dimensionless wind velocity was 20~30%. If the comfort criterion of the university of Western Ontario for pedestrian wind were adopted, the tendencies of the CFD prediction and the wind tunnel experiments were consistent to a considerable extent. The LES turbulence model was the best prediction of standard κ-ε turbulence model and RNG κ-ε turbulence model, but it would take a lot of time to simulate. If used the comfort criterion of the 
Yu-Chun Ting and Chia-Jen Chu, the ranked evaluation of all locations were pleasant. This comfort criterion would not be conservative and could cause the high velocity after the tall building was constructed.
第三語言摘要
論文目次
目錄
第一章 緒論	1
1-1 前言	1
1-2 研究動機	2
1-3 研究方法與內容	3
第二章 文獻回顧	5
2-1 都市氣候與社區微氣候評估	5
2-1-1 熱島效應	5
2-1-2 社區微氣候評估	5
2-1-3 亂流擴散	7
2-2 平均風速剖面分佈	7
2-2-1對數律風速剖面	7
2-2-2指數律風速剖面	8
2-2-3 紊流強度	9
2-3 風流經結構體的行為	11
2-4 建築物風場特性	13
2-5 都市複雜地形幾何建立	19
2-5-1 數值地形圖的取得	19
2-5-2 VBA for Autocad	21
2-5-3 點座標資料擷取	22
2-5-4 建築物幾何形狀建立	25
2-6 數值模擬	28
2-6-1 CFD介紹	28
2-6-2 紊流模式	30
2-7 舒適度評估標準	37
2-8 行人風環境之現況發展	43
第三章 實驗設置與量測方法	46
3-1風洞簡介	46
3-2 風洞內模擬實驗之相似性法則	47
3-3大氣邊界層流場之模擬	50
3-4 TSI定溫熱膜探針之率定	53
3-5 壓力轉換器之率定	54
3-6 地表風速量測器	55
3-7 多頻道電子式風壓掃描器	56
第四章 兩棟獨立高樓之結果與討論	58
4-1 實驗設置	58
4-2 數值模擬的介紹	60
4-3 風洞試驗	62
4-4 風洞試驗與數值模擬分析	65
第五章 都市複雜地形	71
5-1 風洞試驗	71
5-2 數值模擬分析	72
5-2-1 幾何形狀建立	72
5-2-2 網格繪製	72
5-3 台中氣象資料分析	75
5-3-1氣象資料分析流程	75
5-3-2氣象資料的結果	77
5-4 風洞試驗與數值模擬比較	84
5-4-1 網格獨立性測試	84
5-4-2 無因次化平均風速比較(北風)	85
5-4-3 無因次化平均風速比較(西風)	91
5-4-4 無因次化平均風速比較(東北東風)	94
5-4-5 無因次化平均風速比較(北北西風)	96
5-4-6 紊流模式相關性的比較	98
5-4-7 Large eddy simulation模擬預測(北風)	101
5-4-8 Large eddy simulation模擬預測(南風)	106
5-4-9 行人舒適性評估	109
第六章 行人舒適度評估之建議	119
6-1 風洞模擬之行人舒適度調查	119
6-2 實場之行人舒適度調查	120
6-3 行人舒適度評估建議值	123
6-3-1 各國行人舒適度的比較	123
6-3-2 本國舒適度的建議值	131
第七章 結論與展望	136
7-1 氣象資料分析:	136
7-2 幾何形狀建立:	137
7-4 網格繪製	137
7-5 紊流模式的選擇	138
7-6行人舒適度的評估與選擇:	139
7-7 數值模擬的應用:	140
7-8 未來展望:	141
參考文獻	143

圖目錄
圖2- 1紊流邊界層內方形建築物之周遭流場結構(WOO,1976)	13
圖2- 2 迎風面渦旋(自行研究)	14
圖2- 3 建築物尾流(自行研究)	15
圖2- 4 穿堂風(自行研究)	16
圖2- 5角隅強風(自行研究)	16
圖2- 6 遮蔽效應(自行研究)	17
圖2- 7縮流效應(自行研究)	18
圖2- 8台中數值地形	20
圖2- 9 GOOGLE EARTH所提供衛星空照	20
圖2- 10 擷取座標之表單設	24
圖2- 11點座標資料	24
圖2- 12 表單輸出紀錄檔	26
圖2- 13 紀錄檔之文字內容	26
圖2- 14 周遭建築物之幾何形狀的建立	27
圖3- 1 淡江大學大氣邊界層風洞實驗室	47
圖3- 2錐形擾流板及阻牆	52
圖3- 3粗糙元素	52
圖3- 4邊界層ZΔ值,風洞試驗段之高度與錐形擾流板寬度的關係	53
圖3- 5 IRWIN PROBE	56
圖3- 6多頻道壓力訊號處理系統(RADBASE3200)	57
圖4- 1 量測點位置	59
圖4- 2 風洞試驗	59
圖4- 3 風速剖面	61
圖4- 4 結構性網格	61
圖4- 5 風速剖面	62
圖4- 6熱膜探針與IRWIN PROBES之相關性	64
圖4- 7熱膜探針與IRWIN PROBES之誤差值	64
圖4- 8風洞試驗與數值模擬之相關性	67
圖4- 9風洞試驗與數值模擬之誤差值(平均風速)	68
圖4- 10風洞試驗與數值模擬之相關性	69
圖4- 11風洞試驗與數值模擬之誤差值(平均風速)	69
圖4- 12風洞試驗與數值模擬之誤差值(有效風速)	70
圖5- 1風洞試驗模型	73
圖5- 2風洞試驗量測位置點	73
圖5- 3網格品質警示	74
圖5- 4非結構性網格	74
圖5- 5 機率分布與偉伯函數迴歸(北北東~南風)	78
圖5- 6機率分布與偉伯函數迴歸(南南西~北風)	79
圖5- 7 台中市各風向平均風速	80
圖5- 8 台中市各風向發生機率	80
圖5- 9台中市各風向韋伯函數迴歸K值	81
圖5- 10台中市各風向韋伯函數迴歸C值	81
圖5- 11 網格細化之相關性	88
圖5- 12 北風無因化風速的比較	89
圖5- 13 點位置圖(北風)	89
圖5- 14 等無因次化平均風速(北風且高度為1.8公尺)	90
圖5- 15 風洞試驗與數值模擬預測之相關性	92
圖5- 16西風無因化風速的比較	92
圖5- 17點位置圖(西風)	93
圖5- 18等無因次化平均風速(西風且高度為1.8公尺)	93
圖5- 19東北東風無因化平均風速的比較	95
圖5- 20 風洞試驗與數值模擬分析之誤差值	95
圖5- 21北北西風無因化風速的比較	97
圖5- 22 不同紊流模式之相關性	99
圖5- 23 北風無因次化平均風速	100
圖5- 24北北西風無因次化平均風速	100
圖5- 25 LES與STANDARD Κ-Ε紊流模式比較	103
圖5- 26 風洞試驗與數值模擬分析之相關性比較(平均風速)	104
圖5- 27 風洞試驗與數值模擬分析之相關性(有效風速)	105
圖5- 28 風洞試驗與數值模擬之誤差值	105
圖5- 29 LES與STANDARD Κ-Ε紊流模式比較	107
圖5- 30風洞試驗與數值模擬分析之相關性比較(平均風速)	107
圖5- 31風洞試驗與數值模擬分析之相關性(有效風速)	108
圖5- 32風洞試驗評估的結果	111
圖5- 33值模擬評估的結果(STANDARD Κ-Ε)	112
圖5- 34數值模擬評估的結果(RNG Κ-Ε)	113
圖5- 35數值模擬評估的結果(LES)	114
圖5- 36風洞試驗評估的結果	116
圖5- 37數值模擬評估的結果(STANDARD Κ-Ε、RNG Κ-Ε、LES)	117
圖5- 38宜人臨界值,實驗與數值模擬預測發生累積機率之相關性	118
圖6- 1 各國行人舒適度的比較[6-3]	125
圖6- 2 行人舒適度的比較	130
圖6- 3 短時間停留有效風速與發生機率(林晟漢)	133
圖6- 4短時間停留有效風速與發生機率(淡江大學風工程中心)	133
圖6- 5快步行走區有效風速與發生機率(林晟漢)	134
圖6- 6快步行走區有效風速與發生機率(淡江大學風工程中心)	134
表目錄
表2- 1不同地形下,Α、ZΔ值的變化	9
表2- 2不同地形下,Z0、Β值的變化	11
表2- 3風之效應(蒲福風級)	40
表2- 4舒適性評估準則[2-24]、[2-41]	41
表2- 5 住宅區的行人風場評估標準[2-41]	41
表2- 6 商業區及工業區的評估標準[2-41]	42
表2- 7加拿大RWDI公司的行人舒適度評估標準[2-42]	42
表6- 1舒適度標準比較	122
表6- 2 每小時等值風速與發生機率	126
表6- 3 陣風風速與發生機率	126
表6- 4 淡江大學行人舒適度評估準則建議值	135
參考文獻
[1-1] 行政院環境保護署 環境影響評估http://www.epa.gov.tw/
[1-2] 台北市法規查詢系統http://163.29.36.23/taipei/lawsystem/news.jsp
[1-3] 陳啟中,建築物理概論,詹氏書局,1996初版,SBN/ISSN:577050875  
[1-4] 江哲銘,建築物理,三民書局,1997初版,SBN/ISSN:9571424005
[1-5] 賴榮平,林憲德,周家鵬 建築物理環境,六合出版社,1990初版
[2-1] 林憲德,人居熱環境-建築風土設計的第一課,詹氏書局,2009初版,
ISBN:9789577053947
[2-2] 盧博堅、江旭程、陳俊成、劉嘉俊,空氣品質與噪音防制,國立空中大學,2004初版,ISBN:9576615976
[2-3] A.C. Chamberlain, Roughness length of sea, sand and snow, Boundary layer meteorology, 25 pp.405-409 (1983)
[2-4] A.G. Davenport, The relationship of wind structure to wind loading, in Processing of the Symposium on Wind Effects on Building and Structures, National Physical Laboratory 1 pp.53-102 (1965)
[2-5] American National Standard, Minimum design loads for buildings and other structures, American National Standard Institute, Inc. New York (1982)
[2-6] E. Simiu, R.H. Scanlan ,Wind effect on structures second edit (1986)
[2-7] 盧博堅、鄭啟明、楊威,流對二維矩柱分離剪力層發展之影響,力學,第11卷 第2期 pp.117-123 (1995)
[2-8] 盧博堅、鄭啟明、郭俊宜,方柱體於剪力流場中之流場特性研究,力學,第11卷 第2期 pp.125-131 (1995)
[2-9] A.D. Penwarden and A.F.E. Wise, Wind environment around buildings, Building research establishment report, Department of the environment, Building research establishment, Her Majesty's Stationery Office, London (1975)
[2-10] M.G. Melaragno, Wind in architectural and environmental design, Von Nostrand Reindold Co., p.684 (1982)
[2-11] W.J. Beranek, Wind environment around single buildings of rectangular shape and wind environment around building configurations, Heron, 29 pp.1-70 (1984)
[2-12] 吳權威,AutoCAD 2002與VBA中文版實務,碁峰資訊公司,2001初版,ISBN:957566986X
[2-13] 林龍震老師工作室編著,AutoCAD 2000 LISP/VBA程式設計,松崗電腦圖書資料公司,2000初版,ISBN:9572233440
[2-14] AutoCAD 2000 ActiveX與VBA參考手冊,第三波資訊公司,1999 ,ISBN:9572307711
[2-15] AutoCAD 2000 ActiveX與VBA開發人員手冊,第三波資訊公司,1999,ISBN:9572307703
[2-16] J. Sutphin, AutoCAD 2006 VBA: A Programmer's Reference, Berkeley, CA : Springer, 2005, ISBN:9781590595794
[2-17] J. Green, Excel 2007 VBA programmer's reference, Wrox/Wiley, 2007, ISBN:9780470046432
[2-18] J. Walkenbach, Excel 2007 power programming with VBA, Wiley, 2007, ISBN:9780470044018
[2-19] R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, T. Shirasawa, Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan, Journal of wind engineering and industrial aerodynamics, 95 9-11 pp.1551-1578 (2007)
[2-20] J. Wanot, Computational fluid dynamics methods in ship design, R&D projects from Germany (1966)
[2-21] J.W. Deardorff, A numerical study of three dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41 pp.453-480 (1970)
[2-22] S. MURAKAMI, Y. IWASA, Y. MORIKAWA, Study on acceptable criteria for Assessing wind environment at ground level based on residents'Diaries, Journal of wind engineering and industrial aerodynamics, 24 pp.1-18 (1986)
[2-23] A.D. Penwarden, A.F.E. Wise, Wind environment around buildings, Building research establishment report, HMSO (1975)
[2-24] N. Isyumov, A.G. Davenport, The ground level wind environment in built-up areas, Proceeding of the fourth international conference on wind effects on buildings and structures. Cambridge Univ. Press, U.K. pp403-422 (1976).
[2-25] T.V. Lawson, A.D. Penwarden, The effects of wind on people in the vicinity of buildings, Proceeding of the fourth international conference on wind effects on buildings and structures. Cambridge Univ. Press, pp605-622.(1975)
[2-26] J.C.R. Hunt, E.C. Poulton, J.C. Mumford, The effects on people: new criteria based on wind tunnel experiments, Building environment, 11 pp.15-38 (1976)
[2-27] W.H. Melbourne, Criteria for environmental wind conditions, Journal of wind engineering and industrial aerodynamics, 3 pp.241-249 (1978)
[2-28] S. Murakami, K. Uehara,K. Deguchi , wind effects on pedestrians: new criteria based on outdoor observation of over 2000 persons, Report of the annual meeting of architectural institute of Japan (1978)
[2-29] B.E. Lee, M. Hussain, B. Soliman, Prediction natural ventilation forces upon low-rise buildings, ASHRAE J. 22 pp.35-39 (1980)
[2-30] A.C. Khanduri, T. Stathopoulos, C. Bedard, Wind-induced interference effects on buildings-a review of the state-of-the-art, Eng. Struct. 20 pp.617-630 (1998)
[2-31] R. Jozwiak, J. Kacprzyk, J.A. Zuranski, Influence of wind direction on natural ventilation of apartment buildings, Journal of Wind Engineering Industrial Aerodynamics, 60 pp.167-176 (1996)
[2-32] M. bottema, A method for optimization of wind discomfort criteria, Building Environment, 35 pp.1-18 (2000)
[2-33] S.E. Kim, F. Boysan, Application of CFD to Environmental Flows, Journal of Wind Engineering Industrial Aerodynamics, 81 145-158 (1999)
[2-34] J. He, C.C.S. Song, Evaluation of Pedestrian Winds in Urban Area by Numerical Approach, Journal of Wind Engineering Industrial Aerodynamics, 81 pp.295-309 (1999)
[2-35] T. Uchida, Y. Ohya, Numerical Simulation of Atmospheric Flow Over Complex terrain, Journal of Wind Engineering Industrial Aerodynamics, 81 pp.283-293 (1999)
[2-36] S. Murakami, et al., CFD Analysis of Wind Climate from Human Scale to Urban Scale, Journal of Wind Engineering Industrial Aerodynamics, 81 pp.57-81 (1999)
[2-37] A. Mochida, Y. Tabata, T. Iwata, H.Yoshino, Examining tree canopy models for CFD prediction of wind environment at pedestrian level, Journal of Wind Engineering Industrial Aerodynamics, 96 pp.1667-1677 (2008)
[2-38] A. Mochida, H. Yoshino, T. Iwata, Y. Tabata, Optimization of tree canopy model for CFD prediction of wind environment at pedestrian level, The Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan, July (2006)
[2-39] S. Murakami, A. Mochida, S. Kato, Development of local area wind prediction system for selecting suitable site for windmill, Journal of Wind Engineering Industrial Aerodynamics, 91 pp.1759–1776 (2003)
[2-40] A. Zhang, C. Gao, L. Zhang, Numberical simulation of the wind field around different building arrangement, Journal of Wind Engineering Industrial Aerodynamics, 93 pp.891-904 (2005)
[2-41] 丁育群,朱佳仁,建築物之風場環境評估準則研儀,內政部建築研究所 (2000)
[2-42] M.J. Soligo, A.P. Irwin, C.J. Williams, Comprehensive assessment of pedestrian comfort including thermal effects, Proc. 8th US National Conf. on Wind Engineering, John Hopkins University, Baltimore, Maryland, 5-7 June (1997)
[3-1] J.E. Cermak, Application of fluid mechanics to wind engineering. Journal of Fluids Engineering 97, pp.9-38 (1975)
[3-2] J. Golden, Scale model techniques, M.S. Thesis, New York University, College of Engineering, 50 (1961)
[3-3] H.P.A.H. Irwin, The design of spires for wind simulation, Journal of Wind Engineering and Industrial Aerodynamics, 7, pp.361-366 (1981)
[3-4] R.A. Wooding, E.F. Bradley, J.k. Marshall, Drag due to regular arrays of roughness elements of varying geometry, Boundary Layer Meteorology, 5, pp.285-308 (1973)
[3-5] TSI Incorporated, IFA 300 Constant Temperature Anemometer System Instruction Manual. May, (1997)
[3-6] H.P.A.H. Irwin, A Simple omnidirectional sensor for wind-tunnel studies of pedestrian-level winds, Journal of Wind Engineering Industrial Aerodynamics 7, pp.219-239 (1981)
[4-1] P.J. Richards, R.P. Hoxey, Appropriate boundary conditions for computational wind engineering models using the κ–ε turbulence model, Journal of Wind Engineering and Industrial Aerodynamics, 46&47, pp.145-153 (1993)
[4-2] B. Blocken, T. Stathopoulos, J. Carmeliet, CFD simulation of the atmospheric boundary layer: wall function problems, Journal of Atmospheric Environment, 41, pp.238-252 (2007)
[5-1] H.D. Frank, Pedestrian level Wind Criteria Using the Equivalent average, Journal of Wind Engineering and Industrial Aerodynamics, 66, pp.215-226 (1997)
[5-2] J.V Seguro, T.W. Lambert, Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis, Journal of Wind Engineering and Industrial Aerodynamics, 85, pp.75-84 (2000)
[5-3] J.C Nicholas, Discussion on modern estimation of the parameters of the Weibull wind speed distribution for wind speed energy analysis by J.V. Seguro and T.W. Lambert, Journal of Wind Engineering and Industrial Aerodynamics, 89, pp.867-869 (2001)
[5-4] M.J. Stevens, P.T. Smulders, The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes, Wind Eng. 3 (2) pp.132-145 (1979)
[5-5] 李弘斌等人譯,統計學電腦應用,美商麥格羅_希爾國際股份有限公司,1995初版,SBN/ISSN:9578967764  
[5-6] FLUENT 6.3 Users Guide (2009)
[5-7] Y. Tominaga, A. Mochida, R. Uoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics, 96, pp.1749-1761 (2008)
[5-8] GABIT 2.3 Users Guide (2009)
[5-9] Y. Tominaga, A. Mochida, T. Shirasawa, R. Yoshie, H. Kataoka, K. Harimoto and T. Nozu, Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex, J. Asian Archit. Build. Eng. 3 (1) pp.63–70 (2004)
[5-10] Y. Tominagada, A. Mochida, K. Harimoto, H. Kataoka, R. Yoshie, Development of CFD method for predicting wind environment around a high-rise building, Part 3: the cross comparison of results for wind environment around building complex in actual urban area using different CFD codes, AIJ J. Technol. Des. (19) pp.181–184 (2004)
[5-11] 2001 Working Group for CFD Prediction of Wind Environment Around Building, Development of CFD method for predicting wind environment around a high-rise building, Part 1: the cross comparison of CFD results using various k–ε models, AIJ J. Technol. Des. (12) pp.119–124 (2001)
[5-12] C.C.S. Song, J. He, Computation of wind flow around a tall building and the large-scale vortex structure, Journal of Wind Engineering and Industrial Aerodynamics, 46, pp.219–228 (1993)
[5-13] J. He and C.C.S. Song, Computation of turbulent shear flow over a surface-mounted obstcle with large eddy simulation, J. Eng. Mech. ASCE 118 pp.340–351 (1992)
[5-14] J. He, C.C.S. Song, A numerical simulation of wind flow around the TTU building and the roof corner vortex, Journal of Wind Engineering and Industrial Aerodynamics, 67&68 pp.547–558 (1997)
[5-15] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence, J. Sci. Computation, 1 pp.3-51 (1986)
[5-16] 潘家銘,建立較佳行人風場評估方法之初探,淡江大學土木工程研究所碩士論文 (2004)
[6-1] 王志賢,建立行人環境風場舒適性標準之實場調查與評估,淡江大學土木工程研究所碩士論文 (2008)
[6-2] 林晟漢,行人環境風場舒適度標準性評估與數值模擬可行性研究,淡江大學土木工程研究所碩士論文 (2009)
[6-3] F.H. Durgin, Pedestrian level wind criteria using the equivalent average, Journal of Wind Engineering and Industrial Aerodynamics, 66 pp.215–226 (1997)
[6-4] S. Murakami, K. Uehara, K. Deguchi, Wind effect on pedestrians: new criteria based on outdoor observation of over 2000 persons, Wind Engineering, in: J.E. Cermak (Ed), Proc. 5th Int. Conf. on Wind Engineering,pp.277 288 (1979)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信