淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0108201113030600
中文論文名稱 Burgers方程式相似解之探討及其應用
英文論文名稱 A Study of Similarity Solution of Burgers Equation with its Applications
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 林俊仲
研究生英文姓名 Pierce Lin
學號 696430379
學位類別 碩士
語文別 中文
口試日期 2011-06-13
論文頁數 69頁
口試委員 指導教授-馮朝剛
委員-牛仰堯
委員-陳慶祥
中文關鍵字 Burgers方程式  Hopf-Cole變換  相似法 
英文關鍵字 Burgers equation  Hopf-Cole transformation  Similarity method 
學科別分類 學科別應用科學航空太空
中文摘要 具對流與擴散項之非線性Burgers方程式,已有熟知之Hopf-Cole變換解法,而本文採用相似法直接在物理面上探討Burgers方程式,並有系統地以伸縮群及行波相似轉換求得其相似精確解並加以應用在流體力學及氣動力學問題中。本文另以適當的起始條件求出Hopf-Cole變換積分解,並與本文相似解加以連結,使吾人對Burgers方程式之數學結構與物理意義有更進一步之認識和了解。
運用Burgers方程式之一般積分解,有利於在工程數值的模擬分析上驗證相關模型之非線性行為,而採行Burgers方程式之相似解則有利於從應用物理的行為分析上,解釋各種相關工程模型之非線性特性。研究結果顯示,在運用相似轉換法直接對Burgers方程式加以探討,較容易看出本研究問題之本質所在,亦即利用相似法可直接瞭解研究問題中物理量間的關聯性,並可獲得更多在應用物理上的直觀性瞭解。
英文摘要 Abstract:
The prototype equation for nonlinear convection-diffusion processes is Burgers’ equation. An analytical solution of Burgers’ equation was discovered independently by Hopf and Cole. In this paper, a similarity study of Burgers’ equation is exhibited. A systematic approach for obtaining the stretching group and traveling wave similarity solutions are constructed and applied to fluid mechanics, gas-dynamic or stock market dynamics problems. Some exact solutions are also obtained from integral solution of Hopf-Cole transformation, which are related to the stretching group and traveling wave similarity solutions.
Using the general integral solution of Burgers equation is beneficial to efficiently verifying the relevant engineering model in numerical analysis of nonlinear physics. The derived results reveal that one can straightforward find the meaningful solution through similarity transformation of Burgers equation to estimate the key physical variables and obtain more important implications.
論文目次 目錄
目錄首頁………………………………………………………i
誌謝……………………………………………………………iii
中文論文提要…………………………………………………iv
英文論文提要…………………………………………………v
圖目錄…………………………………………………………vi
符號說明……………………………………………………vii
第一章 緒論…………………………………………………1
1-1 研究動機與目的……………………………………………3
1-2 研究流程與論文架構………………………………………5
第二章 Burgers方程式之非線性波動模型………………7
2-1 Burgers方程式的數理模型特性……………………………7
2-2 Burgers方程式在建構物理模型上的應用…………………8
2-2-1 在電磁波訊號的頻譜分析上的應用……………9
2-2-2 在生物訊號傳遞現象分析上的應用………………11
2-2-3 在建構股市非線性行為模型上的應用……………13
2-3 方程式之一般解形式………………………………………15
第三章 Burgers方程式相似解之探討……………………17
3-1 相似法求解非線性力學問題上的重要性…………………18
3-2 非線性波動問題的相似精確解……………………………19
3-2-1具對流與擴散項之非線性Burgers方程式……………19
3-2-1-1 線性擴散方程式(α=0)…………………………20
3-2-1-2 非線性對流方程式(ν=0,α=1)………………20
3-3 Burgers方程式伸縮群之相似解……………………………21
3-3-1 線性擴散方程式(α=0)………………………………22
3-3-1-1 Stokes第一問題之相似解 (m=0)……………22
3-3-1-2 擴散方程式之基本解 …………………………24
3-3-2 非線性對流方程式 (α=1,ν=0)……………………25
3-3-2-1 膨脹波解 (m=0)…………………………………26
3-3-2-2 非線性對流方程式之基本解 (m=-1/2)………27
3-3-2-3 Burgers方程式點源起始條件之基本解 ……28
3-4 Burgers方程式之行波相似解………………………………30
3-4-1 線性擴散方程式之相似解(α=0)……………………31
3-4-1-1 Stokes第二問題之相似解……………………31
3-4-1-2 分離變數法之相似解……………………………32
3-4-2 非線性對流方程式之震波解 (α=1,ν=0)…………33
3-4-3 Burgers方程式之行波相似解 (α=1,ν≠0)………35
第四章 Burgers方程式的一般解與相似解之關聯性……38
4-1 Burgers方程式的一般解與相似解之異同………………38
4-2 建構一般積分解與相似精確解之關聯性…………………40
4-3 方程式點源起始條件之積分解與相似解的關聯性………41
4-3-1 擴散項為主 (ν→∞,R→0)…………………………42
4-3-2 非線性對流項為主 (ν→0,R→∞)…………………42
4-4 Burgers方程式黏性衝擊波之積分解與相似解的關聯性…45
第五章 結論………………………………………………50
參考文獻……………………………………………………54
論文簡要版…………………………………………………59

圖目錄

圖1-1 論文研究流程………………………………………………6
圖2-1 非線性傳輸線之等效電路模型………………………………9
圖3-1 Stokes第一問題之解………………………………………23
圖3-2 擴散方程式之基本解………………………………………25
圖3-3 對流方程式之膨脹波解……………………………………27
圖3-4 Stokes第二問題之解………………………………………32
圖3-5 非線性對流方程式之壓縮波解………………………………34
圖3-6 Burgers方程式之行波相似轉換-黏性衝擊波解………37
圖4-1 點源衝擊波之形成……………………………………………44
參考文獻 [1] Burgers, J. M., “A mathematical model illustrating the theory of turbulence.” Advances in Applied Mechanics, (1948) Vol. I. p171-198, Academic Press, New York.

[2] Lighthill, MJ., “Viscosity effects in sound waves of finite amplitude.” In: Batchelor GK, Davis RM, editors, Surveys in mechanics. Cambridge: Cambridge University Press, (1956), pp.250-351.

[3] Scott, JF., “The long time asymptotics of solutions to the generalized Burgers equation.” Proc R Soc Lond A, (1981) 373, pp.443-56.

[4] Sionoid, PN, and AT. Cates, “The generalized Burgers and Zabolotskaya- Khokhlov equations: transformations, exact solutions and qualitative properties.” Proc R Soc lond A, (1994) 447, pp.253-70.

[5] Enflo, BO and OV. Rudenko, “To the theory of generalized Burgers
equation.” Acta Acust United Acust, (2002) 88, pp.1-8.

[6] Yoshinori, I., K. Noriko and M. Daisuke, “Nonlinear wave propagation in a gas with algebraic density distribution.” Fluid Dynamics Research 34 (2004), pp.99-115.

[7] Christodoulos, E., “Transformation properties of a variable-coefficient Burgers equation.” Chaos, Solitons and Fractals, 20 (2004), pp.1047-1057.

[8] Lie, S., “Vorlesungen uber Differentialgeichungen mit Bekannten
Infinitesmalen Transformationen.” Teuber, Leipzig, (1891) ; Reprinted by Cheksea, New York, (1967).

[9] Bluman, G. W. and J. D. Cole, Similarity methods for differential
equations, Springer-Verlag, New York, (1974).

[10] Bluman, G. W. and S. Kumei, Symmetries and Differentials
Equations, Springer-Verlag, New York, (1989).

[11] Olver, P. J., Applications of Lie Groups to Differential Equations,
GTM, No.107, Springer-Verlag, New York, (1974).
[12]馮朝剛,林志文,”超音速流經拋物線型翼剖面精確解之探討”,第五屆海峽兩岸航空太空學術研討會論文集,淡江大學,pp.23-30, 2006.
[13] Keiji, T., “A study on 1/f noise spectrum generation in nonlinear
transmission media and biomedical systems.” Microelectronics Reliability, 43 (2003), pp.339-342.

[14] Hooge, FN., “1/f noise is no surface effect.” Phys Lett , (1969) 29, A(3): pp.139-40.

[15] Moffat, J. W., “A dynamical model of the capital markets.” Physica A, 264, (1999), pp.532-542.

[16] Michael, F., M. D. Johnson, “Financial market dynamics.” Physica A, 320, (2003), pp.525-534.

[17] Gardner, C. S., et al., “Method for solving the Korteweg-de Vries equation.” Physics Review Letter, 19, (1967), p1095.

[18] Miura, M. R., Backlund Transformation, Spring-Verlag, Berlin, (1978).

[19] Gu, C. H., et al., Darboux Transformation in Solitons Theory and Geometry Applications, Shanghai Science Technology Press, Shanghai, 1999.

[20] Hirota, R., “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons.” Physics Review Letter, 27, (1971), p1192.

[21] Wang, M. L., “Exact solutions for a compound KdV-Burgers equation.” Physics Letter A, 215, (1996), p279.

[22] Abdou, M. A., “The extended F-expansion method and its applications for a class of nonlinear evolution equation.” Chaos Solitons Fractals, 31 (2007), pp.95-104.

[23] Yan, Z., and H. Q. Zhang, “New explicit and exact traveling wave solutions for a system of variant Boussinesq equations in mathematical physics.” Physics Letter A, 252, (1999), p291.
[24] Fu, Z., et al., “New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations.” Physics Letter A, 290, (2001), p72.

[25] Malfliet, W., “Solitary wave solutions of nonlinear wave equations.” America Journal of Physics, 60, (1992), p659.

[26] Salas, A. H., “Symbolic computation of solutions for a forced Burgers equation.” Applied Mathematics and Computation, 216, (2010), pp.18-26.

[27] Rao, C. S., P. L. Sachdev, and M. Ramaswamy, “Analysis of the self-similar solutions of the nonplanar Burgers equation.” Nonlinear Analysis, 51, (2002), pp.1447-1472.

[28] Nagashima, H., and Y. Amagishi, “Experiment on the Toda lattice using nonlinear transmission lines.” J Phys Soc Jpn, (1978) 45(2), pp.680-8.

[29] Lizhi R., G. Wenliang, and C. Jing, “Asymptotic stability of the rarefaction wave for the generalized KdV-Burgers-Kuramoto equation.” Nonlinear Analysis, (2008) 68, pp.402-411.

[30] Musha T. and H. Higuchi, “The 1/f fluctuation of a traffic current on an expressway.” Jpn J Appl Phys, (1976) 15, pp.1271-1275.

[31] Besong D.O., “A new transformation of Burger’s Equation for an exact solution in a bounded necessary for certain boundary conditions.” Applied Mathematics and Computations 215 (2010), pp 3455-3460.

[32] Hopf, E., “The partial differential equation .” Comm Pure Appl Math, (1950) Vol.3, pp.201-230.

[33] Cole, JD. “On a quasilinear parabolic equation occurring in
aerodynamics.” Quart Appl Math, (1951) Vol. 9, pp225-236,.

[34] Xu T., C. Zhang, J. Li, X. Meng, H. Zhu and B. Tian, “Symbolic computation on generalized Hopf-Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics.” Wave Motion 44 (2007), pp 262-270.

[35]馮朝剛,”談數學結構之美與應用之妙”,暨大學報, 一卷一期, pp.117-134, 1997.

[36] Mayil Vaganan B. and M. Senthil Kumaran, “Similarity Solutions of the Burgers Equation with Linear Damping.” Applied Mathematics Letters 17 (2004), pp 1191-1196.

[37] 馮朝剛,”超音速與極音速凹角壓縮流場漸近解之統合”,第五屆海峽兩岸航空太空學術研討會,淡江大學,pp.13-22, 2006.

[38] 劉式適,劉式達,物理學中的非線性方程,北京大學出版社, 2000。



[39] Schlichting, H., Boundary-Layer Theory, McGraw-Hill, New York, 1979.

[40] Stokes, G. G., “On the effect of the internal friction of fluids on the motion of pendulums”, Cambr. Phil. Trans. (1851) IX 8.


[41] 郭玉翠,非線性偏微分方程引論, 北京清華大學出版社, 2008。


[42] Logan, D., J. An introduction to nonlinear partial differential equations, John Wiley & Sons, New York, (1994).


[43] 馮朝剛,”相似法在力學中的應用”,現代力學與科技進步學術研討會論文集,中國力學學會第四十屆年會,北京,pp.1-8, 1997。

[44] 馮朝剛、楊龍杰,”超音速、穿音速與極音速之遠場非線性漸近理論”,第一屆海峽兩岸航空太空學術研討會論文集,pp.7-16, 1995。

[45] Feng, C.K., “Nonlinear asymptotic theory of supersonic corner flow.”, Mathematics is for Solving Problems, Edited by L.P. Cook, V. Roytburd and M. Tulin, Published by SIAM, Philadelphia, pp.18-27, 1996.


[46] 馮朝剛、李松蔚,”超音速遠場非線性理論之應用及其驗證”,第三屆海峽兩岸航空太空學術研討會論文集,淡江大學,pp.7-15, 2001。

[47] 馮朝剛,”超音速尖角流動全場與遠場非線性漸近理論之比較”,第四屆海峽兩岸航空航天學術研討會論文集,南京航空航天大學,上海交通大學,pp.1-9, 2004。


[48] 馮朝剛,”高速氣動力學微小擾動理論之整合探討”,第六屆海峽兩岸航空航天學術研討會論文集,西北工業大學,西安交通大學,pp.1-8, 2008。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信