淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0108201111583700
中文論文名稱 微機電汪克爾引擎之研製
英文論文名稱 An Ultra-Small Wankle Engine Made by MEMS Process
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 王贊翔
研究生英文姓名 Tsan-Hsiang Wang
學號 698370383
學位類別 碩士
語文別 中文
口試日期 2011-06-29
論文頁數 83頁
口試委員 指導教授-楊龍杰
委員-李其源
委員-施文彬
委員-臧效義
委員-康尚文
中文關鍵字 微機電製程  熱阻計算  汪克爾引擎 
英文關鍵字 MEMS process  Wankel Engine  Thermal resistance calculation 
學科別分類 學科別應用科學機械工程
中文摘要 本文參考史特靈引擎的溫差驅動原理,應用於汪克爾引擎並將之微小化,分別微縮尺寸到20 ㎜×14 ㎜、10 ㎜×7 ㎜、5 ㎜×3.5 ㎜三種。並經由理論分析,分別以矽晶圓及PDMS 為基材之差別,當以PDMS 為基材時,腔體內部之流體熱傳導係數僅需大於0.015,因而選用PDMS 作為腔體基材。後續利用微機電技術製作微型汪克爾引擎,以黃光微影及感應耦合電漿蝕刻矽晶圓作為母模搭配聚二甲基矽氧烷PDMS 翻膜製程,成功製作出腔體結構,腔體母模可以重覆利用減少成本。並以SU-8 厚膜光阻製作轉子結構,設計金屬電極作為加熱端,最後利用氧氣電漿做表面改質,將PDMS 及Pryex 7740 接合,並鍍上parylene 防止洩漏,成功製作微型汪克爾引擎。於測試方面,先利用超音波洗淨機確定轉子於製程中無沾黏於PDMS 或Pyrex 7740 表面,並分別以加熱電極及陶瓷加熱片,作為熱源測試是否可利用溫差改變流體體積而驅動轉子轉動。
英文摘要 The purpose of this study will present a novel concept of design and fabrications of an ultra-small engine, the configuration refer to Wankel engine. The engine operates with the temperature difference which refers to the concept of Stirling engine. There are three size have been 20 mm × 14 mm, 10 mm × 7 mm, and 5 mm × 3.5 mm. Through theoretical analysis, compare the internal fluid thermal conductivity as the housings were made of silicon substrate and the PDMS substrate. The author found as the substrate is made of PDMS, the heat transfer coefficient of the internal fluid just bigger than 0.015. So the present study applied the PDMA as the substrate material. An advanced UV-lithography process has been developed, which can produce ultra thickness components of the ultra-small engine. The main detail MEMS processes contain the photo lithography and inductively coupled plasma etching the silicon wafer as a mold of housing, the mold of housing can reuse to reduce costs. The production of SU-8 thick photoresist structure of the rotor, design and fabricate the electrodes be the sensors or actuators. Finally, make use of oxygen plasma surface-modified, bonding the PDMS and Pryex 7740. To prevent leakage the engine was coated with parylene and successful product the micro Wankel engine. To the testing stage, the author applied ultrasonic cleaning machines to test the rotor without sticking to the surface of PDMS or Pyrex 7740. To the heating electrodes and heating ceramic plate be the heat source, testing the heat source whether changes in fluid density and temperature difference driven the rotor.
論文目次 目錄
中文摘要.................................................. I
英文摘要................................................. II
目錄.................................................... III
表目錄....................................................VI
圖目錄.................................................. VII
第一章 緒論................................................1
1-1 前言...................................................1
1-2 研究動機...............................................2
1-3 文獻回顧...............................................3
1-4 相關簡介...............................................8
1-4-1 史特靈引擎...........................................9
1-4-2 汪克爾引擎..........................................10
1-5 研究目的............................................. 12
1-6 研究架構............................................. 12
第二章 微型汪克爾引擎之相關設計...........................14
2-1 外殼方程式............................................14
2-2 微型汪克爾引擎之設計..................................15
2-3 材料選用..............................................16
第三章 微型汪克爾引擎之製造...............................19
3-1 光罩設計..............................................19
3-2 光罩製作..............................................22
3-3 基本製程技術..........................................22
3-3-1 晶片清潔............................................22
3-3-2 微影製程............................................24
3-4 高深寬比微加工製程....................................29
3-5 微型汪克爾引擎之製程..................................30
3-5-1 矽晶圓腔體母模製作..................................31
3-5-2 PDMS 腔體翻模.......................................33
3-5-3 SU-8 轉子製作.......................................37
3-5-4 電極之製作..........................................41
3-6 氧氣電漿表面改質技術製作微型汪克爾引擎................45
3-7 高分子薄膜防止PDMS 材料之洩漏問題.....................47
3-7-1 Parylene 介紹.......................................47
3-7-2 Parylene 沉積過程...................................49
3-7-3 高分子薄膜防止PDMS 材料之洩漏製程改善...............50
第四章微型汪克爾引擎之實驗量測與探討......................51
4-1 實驗設備架構..........................................51
4-2 沾黏測試..............................................53
4-3 電極測試..............................................55
4-3-1 電極作為加熱器測試..................................55
4-3-2 電極做為溫度感測計之溫度校正........................57
4-4 整體測試..............................................59
4-5 整體測試之修正........................................65
第五章結論與未來方向......................................70
5-1 結論..................................................70
5-2 未來方向..............................................72
參考文獻..................................................74
附錄A.....................................................79
附錄B.....................................................82

表目錄
表 1-1 轉子式史特靈循環引擎測試結果........................8
表 2-1 各種可能用於本研究材質之熱傳導係數.................18
表 4-1 電極加熱前後之電阻值...............................65
表 4-2 元件一之電阻變化及對應溫度.........................67
表 4-3 元件二之電阻變化及對應溫度.........................68
表 4-4 電阻變化及對應溫度.................................69
表 B-1 陶瓷加熱片溫度變化.................................82

圖目錄
圖 1-1 微型活塞式引擎......................................4
圖 1-2 微型汪克爾發動機....................................5
圖 1-3 應力與應變分析......................................5
圖 1-4 轉子式史特靈循環引擎................................6
圖 1-5 加熱方式之示意......................................7
圖 1-6 熱機類型之示意......................................8
圖 1-7 史特靈引擎之作動原理...............................10
圖 1-8 汪克爾引擎循環之示意.............................. 11
圖 1-9 論文架構...........................................13
圖 2-1 汪克爾引擎外殼的形狀...............................15
圖 2-2 汪克爾引擎之循環...................................16
圖 2-3 微型汪克爾引擎立體之示意...........................16
圖 2-4 熱傳方向之示意.....................................17
圖 3-1 光罩示意...........................................20
圖 3-2 微型汪克爾之尺寸...................................21
圖 3-3 旋轉塗佈機.........................................25
圖 3-4 紅外線背面對準雙面曝光機...........................28
圖 3-5 正光阻與負光阻之製備程序...........................29
圖 3-6 感應耦合電漿系統硬體架構...........................30
圖 3-7 矽晶圓母模之製作流程...............................31
圖 3-8 感應耦合電漿蝕刻完之晶圓...........................33
圖 3-9 聚二甲基矽氧烷之化學結構...........................34
圖 3-10 翻模完之PDMS 腔體.................................35
圖 3-11 PDMS 腔體SEM 拍攝試片.............................36
圖 3-12 SEM 拍攝腔體邊壁..................................37
圖 3-13 SU-8 轉子之製作流程...............................38
圖 3-14 SU-8 光阻厚度相對曝光劑量之對照...................40
圖 3-15 顯影完成之SU-8 微型轉子...........................40
圖 3-16 SU-8 微型轉子.....................................41
圖 3-17 方形電極之示意....................................42
圖 3-18 金屬舉離法........................................44
圖 3-19 製作完成之黃金方形電極晶片........................45
圖 3-20 PDMS 經氧氣電漿表面處理之示意.....................45
圖 3-21 微型汪克爾引擎之結合之示意........................46
圖 3-22 Bonding後之微型汪克爾引擎.........................47
圖 3-23 聚對二甲苯N、C、D 材料與化學結構..................48
圖 3-24 聚對二甲苯沈積過程................................50
圖 3-25 塗布光阻後再沉積parylene 層.......................50
圖 4-1 超音波洗淨機.......................................51
圖 4-2 以探針接觸裸露之電極...............................52
圖 4-3 純加熱實驗架設.....................................52
圖 4-4 加熱並振動實驗架設.................................52
圖 4-5 激振前後比較.......................................54
圖 4-6 加熱電極溫度.......................................56
圖 4-7 第一顆元件之測試電極命名及位置示意.................57
圖 4-8 第一顆元件電阻-溫度................................58
圖 4-9 第二顆元件之測試電極命名及位置示意.................58
圖 4-10 第二顆元件電阻-溫度...............................59
圖 4-11 純加熱不振動測試..................................60
圖 4-12 以加熱電極加熱並輔以超音波振動....................61
圖 4-13 流體體積變化......................................61
圖 4-14 陶瓷加熱片........................................62
圖 4-15 陶瓷加熱片架設....................................62
圖 4-16 以陶瓷加熱片加熱輔以超音波振動....................63
圖 4-17 加熱片與元件之擺設................................64
圖 4-18 實驗架設..........................................66
圖 4-19 元件架設..........................................66
圖 A-1 以矽晶圓製作微型汪克爾引擎之示意...................79
圖 A-2 腔體製程流程.......................................80
圖 A-3 轉子製程流程.......................................81
圖 A-4 腔體及轉子實體.....................................81
圖 B-1 以紅外線熱像儀拍攝陶瓷加熱片溫度...................83
參考文獻 [1] R. P. Feynman, “There’s plenty of room at the bottom,” Journal of Microelectromechanical system, Vol. 1, No. 1, pp. 60-66, 1992.
[2] R. P. Feynman, “Infinitesimal Machinery,” Journal of
Microelectromechanical systems, Vol. 2, No. 1, pp. 4-14, 1993.
[3] 張志誠,微機電技術,台北,商周出版社,2002 年。
[4] Proceedings: IEEE Micro Electro Mechanical Systems. An
Investigation of Micro Structures, Sensor, Actuators, Machines and Robots, Micro Electro Mechanical Systems, Proceedings, ‘An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots’. IEEE, 20-22 Feb., 1989.
[5] Y. C. Tai, L. S. Fan, and R. S. Muller, “IC-process micro-motors:design, technology, and testing, ” Micro Electro Mechanical System, 1989, Proceedings, An Investigation of Micro Structures, Sensors,Actuators, Machines and Robots’. IEEE, 20-22 Feb., 1989, pp. 1-6.
[6] A. H. Epstein, et al, “Power MEMS and Micro Engines,” Proc. of Transducer’97, Chicago, June 1997, Vol. 2, pp. 753-756.
[7] 楊龍杰,掌握微機電,滄海書局,38 頁,2007 年。
[8] P. Jin, K. Jiang, and N. Sun, “Microfabrication of ultra-thick SU-8 photoresist for microengines,” Proceedings of SPIE - The International Society for Optical Engineering, 2003, Vol. 4979, pp. 105-110.
[9] C. H. Lee, K. C. Jiang, P. Jin, and P. D. Prewett, “Design and fabrication of a micro Wankel engine using MEMS
technology,” Microelectronic Engineering, 2004, Vol. 73-74, pp.529-534.
[10] 周彥志,轉子式史特靈循環引擎研製與分析,淡江大學機械與
機電工程學系博士論文,2009 年6 月。
[11] 曾玉泉,極速引擎的魅力-史特靈引擎(Stirling Engine)的介紹、
製作與教學活動設計,生活科技教育月刊,第五期,39 卷,2006
年。
[12] 深藍論壇http://www.student.tw/db/showthread.php?t=134045,引用日期:2010/1/19。
[13] D. Eiermann, R. Nuber, J. Breuer, M. Soimar and M. Gheorghiu,“An Experimental Approach for the Development of a small Spark Assisted Diesel Fueled Rotary Engine,” International Congress and Exposition, Detroit, Michigan, SAE Paper NO. 930683, 1993.
[14] P. A Salanki & J. S. Wallace “Evaluation of the Hydrogen-Fueled Rotary Engine for Hybrid Vehicle Applications,” SAE International Congress and Exposition, Detroit, Michigan, 26-29 Feb., SAE Paper NO. 960232, 1996.
[15] R.F. Ansdale, The Wankel RC engine: design and performance, South Brunswick, N.J.: A. S. Barnes, ISBN: 0592006255, 1969.
[16] D.E. Cole, “The Wankel engine,” Scientific American, Vol. 227, No.2, pp. 14-23, 1972.
[17] K.C. Weston, “Computer simulation of a Wankel Rotary
engine-Analysisand graphics,” Proceedings of the Conference of the Society for Computer Simulation, pp. 213-216, 1986.
[18] 維基百科http://zh.wikipedia.org/zh-tw/轉子引擎,引用時間:2010/1/19
[19] F. Kreith, and M.S. Bohn, Principles of Heat Transfer, sixth edition,THOMSON.
[20] D. J. Beebe, R. J. Adrian, M. G. Olsen, M. A. Stremler, H. Aref, and B. H. Jo, “Passive mixing in microchannels: fabrication and flow experiments,” Mécanique & Industries, Vol. 2, No. 4, pp. 343-348,
2001.
[21] Y. C. Lin, Y. C. Chung, and C. Y. Wu, “Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel”,Biomedical Microdevices, Vol. 9, No. 2, pp. 215-221, 2007.
[22] B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe,“Three-dimensional micro-channel fabrication in
polydimethylsiloxane (PDMS) elastomer,” Journal of
Microelectromechanical Systems, Vol. 9, No. 1, pp. 76-81, 2000.
[23] L. J. Yang, and T. Y. Lin,“A PDMS-based thermo-pneumatic micropump with Parylene inner walls, ” Microelectron. Eng.,doi:10.1016/j.mee.2011.02.067, 2011.
[24] 葉富文,碎形微圖案應用於被動式微混合器之研製,淡江大學
機械與機電工程學系碩士論文,2010 年6 月。
[25] 胡毓忠,電感耦合電漿蝕刻機(ICP)使用指導書,國科會北區
微機電系統研究中心。
[26] L.J. Yang, “ On gas permeation in PDMS, ” Journal ofMicromechanics and Microengineering 20 (11), p. 115033, 2010.
[27] Gersteltec Sarl, SU-8 negative tone photoresist thickness 15-200 μm,GM 1070 technical datasheet, Switzerland.
[28] Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.J. Park, C. Chung, D.C.Han, and J.K. Chang,“PDMS-based micro PCR chip with Parylene coating,”Journal of Micromechanics and Microengineering, 13(5), pp. 768-774, 2003.
[29] H. M. Tong, et al., “Parylene encapsulation of ceramic packages for liquid nitrogen application”, IEEE Trans. Electron Devices,Vol.37, No.3, 1990, pp.345-350.
[30] E. M. Charlson, et al., “Temperature selective deposition of parylene-C”, IEEE transactions on biomedical engineering, Vol.39, No.2, Feb., 1992, pp.202-206.
[31] R. Olson, et al., “Relative compatibility of parylene conformal coatings with no-clean flux residues”, Electronics manufacturing technology symposium, 1993, pp.157-164.
[32] G. R. Yang, et al.,“High deposition rate parylene film,”Journal of crystal growth, Vol.183, 1998, pp.385-390.
[33] X. Yang, et al., “Micromachined membrane particle filters, ”Sensor and Actuators , Vol.73, 1999, pp.184-191.
[34] X. Q. Wang, et al., “A normally closed in-channel micro check valve”, Proceeding of IEEE MEMS, 2000, pp.68~73.
[35] M. Bera, et al., “Comparison of the photodegradation of parylene C and parylene D”, European Polymer Journal, Vol.36,2000, pp.1765~1777.
[36] T. J. Yao, et al., “Dielectric charging effects on parylene electrostatic actuators”, Proceeding of IEEE MEMS, 2002,pp.614~617.
[37] J. Noordegraaf, et al.,” C-SHIELD Parylene allows major weight saving for EM shielding of microelectronic”, The First IEEE International Symposium on Polymeric Packaging, 1997,pp.189~196.
[38]http://www.paryleneengineering.com/parylene_deposition_process.html, 引用時間:2010/4/20。
[39] http://www.paryleneengineering.com/, 引用時間:2010/4/20。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信