§ 瀏覽學位論文書目資料
系統識別號 U0002-0108200515182200
DOI 10.6846/TKU.2005.00801
論文名稱(中文) 利用電化學法從鐵污泥中再生亞鐵離子應用於FENTON程序處理染料廢水之研究
論文名稱(英文) Dye wastewater treatment using fenton process with Fe(II) electrolytically regenerated from iron-containing sludge
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 邱亦政
研究生(英文) Yi-Cheng Chiu
學號 692330128
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-10
論文頁數 53頁
口試委員 指導教授 - 李奇旺
委員 - 陳孝行
委員 - 李伯青
關鍵字(中) Fenton程序
電解法
染料
COD去除率
鐵污泥
關鍵字(英) Fenton process
Electrolysis
Dye
COD removal
Iron sludge
第三語言關鍵字
學科別分類
中文摘要
Fenton程序擁有良好及迅速的去除能力,但其產生大量的污泥導致其很少被使用在實廠上。因此本研究將Fenton程序產生之污泥以電解法還原再生亞鐵離子,由實驗結果發現由鐵污泥再生之亞鐵離子,可成功成為Fenton程序所需之鐵源,而其電解還原亞鐵離子之最佳pH值為1。電解再生亞鐵離子之電流效率約為20~30%左右。
本研究以染料廢水作為原水,而且當 Fe(II)相對於總流量的比值超過0.03時,COD去除率就可達到90%以上。出流水的導電度由0.87~67.8 ms,隨著亞鐵離子的加藥量而增加。鐵污泥在經過多次的循環使用後,導致VSS/TSS大於30%,使得污泥脫水性不佳。
在研究中發現鐵污泥還原形成亞鐵離子可作為Fenton程序中之鐵源,並可以成功的處理人工染料廢水,以及減少污泥的產量。
英文摘要
Fenton process producing hydroxyl radical removes contaminants efficiently and rapidly. However, huge quantity of iron sludges produced by the process hinders application of this process in full scale treatment system. In this study, Fe (II) regenerated from iron sludge by electrolytic method was employed to reduce the sludge problem. At pH of 1.0, Fe (II) can be regenerated efficiently from iron sludge. The electrolytic current efficiency of Fe(II) regeneration was about 20~30%, depending on current density.
Synthetic dye wastewater was prepared and treated with Fenton process using regenerated Fe (II). More than 99% of COD removal can be achieved by the process. Effluent conductivities increased with increasing the dosage of regenerated Fe (II), ranging from 0.87 to 67.8. VSS/TSS ratio of sludges increases and dewaterability of iron sludge worsen gradually with the number of the sludge been used.
In this study, we found the sludge could be reuse and reduce to Fe(II) which was used as the iron source for the subsequent Fenton process. Synthetic dye wastewater was treated with Fenton process using recycled iron, and the amount of sludge generated was reduced substantially.
第三語言摘要
論文目次
目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 VIII 
第一章、前言	1
第二章、文獻回顧	4
2-1 FENTON法	4
2-1-1 Fenton法反應理論	4
2-1-2 Fenton反應影響因素	6
2-2 ELECTRO-FENTON法	9
2-2-1 Electro-Fenton法反應理論	9
2-2-2 Electro-Fenton法反應影響因素	11
2-2-3 影響亞鐵離子再生(Regeneration of Fe2+)之操作條件	12
2-3 污泥脫水特性	16
第三章、實驗設備與方法	18
3-1實驗試劑	18
3-1-1 人工原水	18
3-1-2 Fenton試劑	18
3-1-3 pH調整試劑	19
3-1-4 鐵污泥製備	19
3-2實驗設備	19
3-2-1 pH控制模組	21
3-2-2 液位計	22
3-3-3 電源供應器	22
3-3 實驗方法	22
3-4分析方法	28
3-4-1 過氧化氫之分析	28
3-4-2 亞鐵及總鐵之分析	28
3-4-3 COD、真色色度及導電度之分析	29
3-4-4 毛細汲取時間(CST)	30
3-4-5界達電位 ( Zata-potentials )	31
3-4-6總懸浮固體(TSS)及揮發性懸浮固體(VSS)	32
第四章、結果與討論	33
4-1 PH值對於亞鐵再生的影響	33
4-2 處理效率及處理水質	36
4-2-1 COD及色度處理效率	36
4-2-2 出流水水質	38
4-3 亞鐵離子再生的影響因素	43
4-4 污泥的循環使用對於污泥脫水性之影響	47
第五章、結論及建議	51
參考文獻	52

圖目錄
圖 1、實驗設備圖	21
圖 2、毛細汲取時間(CST)試驗設備(曾,1992)	31
圖 3、不同pH值下污泥可溶出的鐵濃度 (取樣時間為pH值調整後1小時)	34
圖 4、不同pH值對於以電解法將鐵污泥還原成亞鐵離子的影響	35
圖 5、Fe(II) to total flow 相對於COD去除率之關係圖	37
圖 6、Fe2+流量/總流量之比相對於出流水導電度變化圖	39
圖 7、電解槽內之亞鐵離子濃度相對於COD濃度	42
圖 8、試驗次數相對於COD溶出的濃度	42
圖 9、(a) 亞鐵離子之濃度及(b) Fe (II) / Fetot 之百分比 (水樣為電解槽內取出)相對於電解時間之關係圖	45
圖 10、鐵濃度相對於電流效率關係圖	46
圖 11、Fe(II)/total Fe 相對於CST關係圖	48
圖 12、CST相對於TSS濃度關係圖	48
圖 13、VSS/TSS(%)相對於界達電位關係圖	49

表目錄
表 1 反應速率表	5
表 2溶解相化合物種與氫氧自由基之反應速率常數(Werner and David.,1992)	5
表3 人工原水進流濃度及其水質特性	18
表4實驗條件	27
表 5不同實驗條件下,經過處理之水質參數	41
表 6污泥脫水特性之參數	50
參考文獻
參考文獻
Brillas, E.,Mur, E.,Casado, J. 1996. Iron (II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 143, 973-982.
Chang, P.-H.,Huang, Y.-H.,Hsueh, C.-L.,Lu, M.-C.,Huang, G.-H. 2004. Treatment of non-biodegradable wastewater by electro-Fenton method. Water Science & Technology 49(4), 213-218.
Chen, G.,Hoag, G.E.,Chedda, P.,Nadim, F.,Woody, B.A.,Dobbs, G.M. 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent. Journal of Hazardous Materials 87(1-3), 171-186.
Chou, S.,Huang, C. 1999. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 38(12), 2719-2731.
Chou, S.,Huang, Y.-H.,Lee, S.-N.,Huang, G.-H.,Huang, C. 1999. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Research 33(3), 751-759.
Gallard, H.,Laat, J.D. 2000. Kinetic modelling of fe(III)/h2o2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Research 34(12), 751-759.
Gnann, M.,Gregor, C.H.,Schelle, S. 1996. Chemical oxidative process for purifying highly contaminated wastewater. Solvay Interox GmbH.
Hsiao, Y.L.,Nobe, K. 1993. Hydroxylation of chloro-benzene and phenol in a packed bed flow reactor with electrogenerated Fenton's reagent. J. Appl. Electrochem 23, 943-946.
Hsueh, C.L.,Huang, Y.H.,Wang, C.C.,Chen, C.Y. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58(10), 1409-1414.
Huang, C.P.,Shu, C.S.,Chen, C.W.,Dong, C. 1993. Advanced Chemical Oxidation:Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Management 13, 361 ?77.
Huang, Y.-H.,Chou, S.,Perng, M.-G.,Huang, G.-H.,Cheng, S.-S. 1999. Case study on the bioeffluent of petrochemical wastewater by electro-fenton method. Water Science and Technology 39(10-11), 145-149.
Kang, S.F.,Chang, H.M. 1997. Coagulation of Textile Secondary Effluents with Fenton's Reagent. Wat. Sci. Tech. 36(12), 215-222.
Kuo, W.G. 1992. Decolorizing dye wastewater with Fenton's reagent. Water Research 26(7), 881-886.
Lin, S.H.,Lo, C.C. 1997. Fenton process for treatment of desizing wastewater. Water Research 31(8), 2050-2056.
Lindsey, M.E.,Tarr, M.A. 2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41(3), 409-417.
Neamtu, M.,Siminiceanu, I.,Kettrup, A. 2000. Kinetics of nitromusk compounds degradation in water by ultraviolet radiation and hydrogen peroxide. Chemosphere 40(12), 1407-1410.
Pratap, K.,Lemley, A.T. 1994. Electrochemical peroxide treatment of aqueous herbicide solutions. J. Agric. Food Chem. 42(1), 209-215.
Qiang, Z.,Chang, J.-H.,Huang, C.-P. 2003. Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research 37(6), 1308-1319.
Sedlak, D.L.,Andren, A.W. 1991. Oxidation of chlorobenzene with Fenton's reagent. Environmental Science & Technology 25(4), 777-782.
Sudoh, M.,Kodera, T.,Sakai, K.,Zhang, J.Q.,KoideK. 1986. Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent. J. Chem. Eng. Jpn. 19, 513-518.
Tamura, H.,Goto, K.,T, Y.,M., N. 1974. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21(4), 314?18.
Walling, C.,Kato, S. 1971. The Oxidation of Alcohols by Fenton's Reagent: the Effect of Copper Ion. J. Am. Chem. Soc. 93, 4275-4281.
Xu, X.-R.,Zhao, Z.-Y.,Li, X.-Y.,Gu, J.-D. 2004. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent. Chemosphere 55(1), 73-79.
Yoon, J.,Lee, Y.,Kim, S. 2001. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Science & Technology 44(5), 15-21.
曾迪華(1992),「事業廢水處理技術員講習或訓練教育講義」。
論文全文使用權限
校內
校內紙本論文立即公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信