§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0107202117480400
DOI 10.6846/TKU.2021.00022
論文名稱(中文) 利用熱、紫外線、零價鐵和亞鐵離子活化過硫酸鹽處理NMMO廢水
論文名稱(英文) Treating NMMO wastewater by persulfate activated with heat, UV, ZVI and Fe2+
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 周怡柔
研究生(英文) I-Jou Chou
學號 609480032
學位類別 碩士
語言別 英文
第二語言別
口試日期 2021-05-28
論文頁數 47頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 彭晴玉(cypeng@mail.tku.edu.tw)
關鍵字(中) 過硫酸鹽
NMMO 廢水
高級氧化程序
紫外光

關鍵字(英) Persulfate
NMMO wastewater
AOPs
UV
heat
第三語言關鍵字
學科別分類
中文摘要
N-甲基嗎林-N-氧化物(NMMO)是一種有機化合物,在萊賽爾工藝中用作溶解纖維素的溶劑,用於生產萊賽爾纖維。只有少數研究調查使用生物程序和臭氧化程序去除 NMMO 廢水,顯示出降解 NMMO 廢水的困難。本論文以高級氧化程序(AOPs)處理含 NMMO 的廢水,以過硫酸鹽為氧化劑,探討各種活化方法,包括加熱、紫外線、添加零價鐵(ZVI)及亞鐵離子(Fe2+)對 NMMO 降解去除的影響,並研究反應時間、溫度、PS 劑量及各種變因對去除效率的影響。此外,本論文中也比較過硫酸鹽 AOPs與 H2O2 AOPs 對 NMMO 去除的效率。在 UV/PS/ZVI 程序中,使用 100%的PS 理論劑量並添加 1g/L 的 ZVI,反應 3 小時後,其 TOC 去除效率僅為 4 %。然而,在 Fe(II)/PS 的程序中,使用 100%的 PS 理論劑量並添加1g/L 的 Fe(II),反應 4 小時後,COD 和 TOC 去除效率僅分別達到 15%和 50%。在 UV/H2O2 程序中,使用 50%的理論 H2O2 劑量,反應 4 小時後, COD 和 TOC 的去除效率也僅分別達到 17.3%和 40.4%。而在本研究之預處理程序中,熱/PS 程序具有最佳的 COD 和 TOC 去除效率,在加熱溫度為 80°C 時,使用 100%的 PS 理論劑量,反應 3 小時後,其 COD 和 TOC去除效率分別達到 62.5%和 78.1%,並且在程序中添加的 PS 已被消耗99%,此結果表明大多數的 PS 都已經被活化來氧化有機污染物。經由上述熱/PS 前處理程序處理後,未處理 NMMO 廢水的 BOD5/COD 比值從 0.1 (該比值被認為對生物降解具有頑固性)增加至 0.3,結果表明藉由熱 /PS 處理程序能提升此水體的生物降解性,因此能採用熱/PS 程序作為後續生物降解處理程序之前處理。在熱/PS 程序處理 NMMO 廢水的成本方面,此熱/PS 系統需要 0.064 kWh/L 的能量,其能源成本約為 0.004 美元/升,而化學藥劑成本為 0.34 美元/升,所以處理的總成本為 0.344美元/升。
英文摘要
N-methylmorpholine-N-oxide (NMMO), an organic compound, is used in the Lyocell process as a solvent to dissolve cellulose for the production of Lyocell fibers. Only a few studies investigated the removal of
NMMO-wastewater using biological process and ozonation processes, showing the difficulties of degrading NMMO-wastewater. In this study,
NMMO-containing wastewater was treated using AOPs, i.e., oxidation process using persulfate, in order to produce an effluent suitable for biological treatment. Various combination of PS activation methods were investigated including heating process, UV, addition of zero valent iron (ZVI), ferrous ion (Fe2+) and hydrogen peroxide (H2O2). Various effects were studied such as reaction time, temperature and PS dosage. In the UV/PS/ZVI system, the TOC removal efficiency was only 40% after 3 hours using the theoretical PS dosage of 100% with the ZVI dosage of 1 g/L. On the opposite, the COD and TOC removal efficiency only reached the value of 15% and 50% after 4 hours, respectively in the Fe(II)/PS process at the Fe(II) dosage of 1 g/L and the theoretical PS dosage of 100%. Using the the UV/H2O2 process, the COD and TOC removal efficiencies only reached the value of 17.3% and 40.4%, respectively, with the theoretical H2O2 dosage of 50% and the reaction time of 4 hours. 
Compare to the other processes, the heat/PS system had the best COD and TOC removal efficiencies with the theoretical PS dosage of 100% at 80 °C and the reaction time of 3 hours. The COD and TOC removal efficiencies reached 62.5% and 78.1%, respectively. 99% of PS concentration was consumed after 3 hours, showing its activation. The degradation of organic matters was more efficient at higher temperatures with 36.74% and 78.1% of TOC removal at 60°C and 80°C, respectively, after 2 hours of reaction using the heat/PS system. The COD and TOC removal efficiencies increased with increasing PS dosage, showing that the heat/PS system was PS dosage dependent. The BOD5/COD ratio in the raw NMMO wastewater was 0.1 and this value is considered recalcitrant for biodegradability. After treatment with the heat/PS system, the BOD5/COD ratio increased to the value of 0.3 at the theoretical PS of 100%, the temperature of 80°C and the reaction time of 3 hours, indicating the effluent to be suitable for biodegradability. The activation of theoretical PS dosage of 100%, which was almost complete to oxidize the organic pollutants, required the energy of 0.192 kWh/L in the heat/PS system. The energy cost is about 0.011 USD/L and the chemical cost is 0.34 USD/L, increasing the total cost of the process to 0.351 USD/L of treated wastewater.
第三語言摘要
論文目次
Acknowledgements  i
中文摘要           ii
Abstract          iii
Contents          v
List of Tables    viii
List of Figures   ix
List of Symbols   xi
1 Introduction    1
1.1 Background information                     1
1.2 Objectives                                 2
2 Literature reviews                           4
2.1 Wastewater containing NMMO                 4
2.2 Conventional processes for NMMO treatment  5
2.3 Advanced Oxidation Processes (AOPs)        5
2.3.1 PS process                               6
2.3.2 Fenton process                           8
2.3.3 Ozone process                            11
3 Materials and Methods                        13
3.1Chemicals and wastewater                    13
3.2 Experimental methods                       15
3.2.1 Calculation of theoretical PS dosage required for complete oxidation of organic matter           15

3.2.2  UV/PS process                           16            
3.2.3 Heat/PS process                          17
3.24 UV/ZVI/PS process                         18
3.2.5 UV/Fe(Il)/PS process                     19
3.2.6 UV/Hs02 process                          19
3.3 Analytical methods                         20
3.3.1 TOC analysis                             20
3.3.2 COD analysis                             20
3.3.3  COD/TOC mass ratio                      21
3.3.4 PS analysis                              22
3.3.5 BODs Analysis                            22
3.3.6 BODs/COD mass ratio                      23
3.3.7 Calculation of the energy needed for heating process
                                               23

3.3.8 Calculation of the energy needed for UV process  23
4 Results and Discussion                               25
4.1 UV/PS process                                      25
4.2 UV/PS/ZVI process                                  26
4.3 UV/PS/Fe(II) process                               28
4.4 Heat/P'S process                                   29
4.4.1 Effects of temperature                            29
4.4.2 Effects of PS dosage                              33
4.4.3 Effects of reaction time                          34
4.5 UV/H2O2 process                                    36
5 Conclusions                                          39
References                                             41


LIST OF TABLES
2.1 Oxidizing potential of various oxidants 6
3.1 Characteristics of raw NMMO-wastewater 15
4.1 The energy costs in the UV/PS system 26
4.2 Comparison of the price of P'S and H2O2 38


LIST OF FIGURES
2.1 Chemical structure of N-MethyImorpholine N-Oxide [14] 5
3.1 Scheme of the Lyocell process [12] 14
3.2 Scheme of the NMMO recycling process 15
3.3 Scheme of the UV system [30] 17
3.4 Scheme of the heating system 18
Effect of reaction time on COD and TOC removal of NMMO wastewater using UV/PS system 26
4.2 Effect of reaction time on COD and TOC removal of NMMO wastewater using UV/PS/ZVI system 28
4.3 Effect of reaction time on COD and TOC removal of NMMO wastewater using UV/PS/Fe(II) system 29
4.4 Effect of temperature on COD and TOC removal of NMMO wastewater using heating process 30

4.5 Effect of temperature on COD and TOC removal of NMMO wastewater using heat/PS system 31

4.6 COD concentration as a function of PS concentration in DI water 32

4.7Efect of PS dosage on COD and TOC removal of NMMO wastewater using heat/PS system 34

4.8Efect of reaction time on COD removal of NMMO wastewater using heat/PS system 35
4.9 Effect of reaction time on TOC removal of NMMO wastewater using heat/PS system 35
4.10 Effect of reaction time on COD and TOC removal of NMMO wastewater using UV/H202 system 37
參考文獻
[1] M. Yates. Fabrics: A guide for interior designers and architects. WW Norton &
Company, 2002.
[2]S.Zhang, C. Chen, C. Duan, H. Hu, H. Li, J. Li, Y. Liu, X. Ma, J. Stavik, and
Y. Ni, (2018) "Regenerated cellulose by the lyocell process, a brief review of the
process and properties" BioResources 13(2): 1-16. DOI: 10 . 15376/biores
13.2.Zhang.
[3] L. K. Hauru, M. Hummel, A. Michud, and H. Sixta, (2014) "Dry jet-wet spinning
of strong cellulose Filaments from ionic Tiquid solution" Cellulose 21 (6): 4471
4481. DOI:10.1007/s10570-014-0414-0.
[4] I. Adorjan, J. Sjoberg, T. Rosenau, A. Hofinger, and P. Kosma, (2004) "Kinetic
and chemical studies on the isomerication of monosacchardes in N-methyImorpholine-
N-oxide (NMMO) under Lyocell conditions" Carbohydrate Research 339(11):
1899-1906. DOI: 10.1016/j.carres.2004.06.004.
[5] G. Meister and M. Wechsler, (1998)"Brodegradation of N-methylmorpholine-N-
oxide"Biodegradation 9(2): 91-102. DOI: 10.1023/A:1008264908921.
[6]M.Shafiei, K. Karimi, and M. J. Taherzadeh, (2011) "Techno-economical study
of ethanol and brogas from spruce wood by NMMO-pretreatment and rapid fer-I
mentation and digestion" Bioresource Technology 102(17): 7879-7886. DOE:
10.1016/j.biortech.2011.05.071.
[7]H. Stockinger, O. M. Kut, and E. Heinzle, (1996) "Oconation of wastewater
containing n-methynorpholine-n-oude" Water Research 30(8):1745-1748.
DOI:10.1016/0043-1354(95)00320-7.
[8] A. A. Babaei and F. Ghanbari, (2016)"COD removal from petrochemical wastewater by IV/hydrogen peroride, UV/persulfate and UV/percarbonate: biodegrad-I
ability improvement and cost evaluation" Journal of Water Reuse and Desalination 6 (4) : 484-494. DOI: 10.2166/wrd.2016.188.
[9]    S.-Y.  Oh,  H.-W.  Kim,  J.-M.  Park,  H.-S.  Park,  and  C.  Yoon,  (2009)“Oxidation of polyvinyl alcohol by persulfate activated with heat,Fe2+, and zero-valent iron”Journal of Hazardous Materials.168(1): 346–351.doi:10.1016/j.jhazmat.2009.02.065.
[10]H.P.Fink,P.Weigel, H. J. Purz, and J. Ganster, (2001) "Structure formation of regenerated cellulose materials from NMMO-solutions" Progress in Polymer
Science 26(9) : 1473-1524. DOI:10.1016/S0079-6700(01)00025-9.
[11] S. Bohmdorfer, T. Hosoya, T. Roder, A. Potthast, and T. Rosenau, (2017) "A cautionary note on thermal runaway reactions in miatures of 1-alkyl-3-methylimida-
zolium ionic liquids and N-methylmorpholine-N-oxide"Cellulose 24 (5): 1927-
1932. DOI:10.1007/s10570-017-1257-2.
[12] T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, (2001) "The chemistry of
side reactions and byproduct formation in the system NMMO/cellulose (Lyocell
process)" Progress in Polymer Science 26 (9): 1763-1837. DOI: 10.1016/
S0079-6700(01)00023-5.
[13]    C. H. Kuo and C. K. Lee, (2009)“Enhanced  enzymatic  hydrolysis  of  sugarcanebagasse  by  N-methylmorpholine-N-oxide  pretreatment”Bioresource Technol-ogy100(2): 866-871.doi:10.1016/j.biortech.2008.07.001.
[14] Sigma-Aldrich.4-Methylmorpholine N-oxide solution.
[15] J. L. Wang and L. J. Xu, (2012)"Aduanced oxidation processes for wastewater
treatment: Formation of hydroxyl radical and application" Critical Reviews in
Environmental Science and Technology 42(3) : 251-325. DOI: 10 . 1080 /
10643389.2010.507698.
[16]Y. Deng and R. Zhao, (2015)"Aduanced Ozidation Processes (AOPs) in Wastew-
ater Treatment"Current Pollution Reports 1(3): 167-176. DOI: 10.1007/s40726-015-0015-z.
[17]S. C. Ameta. "Chapter 1 - Introduction". In: Advanced Oxidation Processes for
Waste Water Treatment. Ed. by S. C. Ameta and R. Ameta. Academic Press,
2018, 1-12. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00001-2.
[18]M. Zhang, X. Chen, H. Zhou, M. Murugananthan, and Y. Zhang, (2015) "Degra-
dation of p-nitrophenol by heat 22 and metal ions co-activated persulfate" Chem-
ical Engineering Journal 264: 39-47. DOI: 10.1016/j.cej .2014.11.060.
[19]Z.Xu, C. Shan, B. Xie, Y. Liu, and B. Pan, (2017) "Decompleration of Cu(Il)-
EDTA by UV/persulfate and UV/H202: Efficiency and mechanism" Applied
Catalysis B: Environmental 200: 439-447. DOI: 10.1016/j .apcatb.2016.
07.023.
[20]H. J. Fenton, (1894) "LXXIII. - Oxdation of tartaric acid in presence of tron
Journal of the Chemical Society, Transactions 65: 899-910. DOI: 10
1039/CT8946500899.
[21]A. Babuponnusami and K. Muthukumar, (2014) "A review on Fenton and im-
provements to the Fenton process for wastewater treatment" Journal of Envi-
ronmental Chemical Engineering 2(1): 557-572. DOI: 10. 1016/ j. jece.
2013.10.011.
[22]S. H. Lin and C. C. Lo, (1997) "Fenton process for treatment of desizing wastew-
ater"Water Researcb.31(8):.2050-2056.  DO篮..10.-1016 / 043-1354(9 )
00024-9.
[23] Y. W. Kang and K. Y. Hwang, (2000) "Effects of reaction conditions on the
oxidation efficiency in the Fenton process" Water Research 34 (10): 2786
2790. DOI:10.1016/S0043-1354(99)00388-7.
[24] I. Talinli and G. Anderson, (1992) Interference of hydrogen perozide on the
standard COD test" Water Research 26(1) : 107-110. DOI: 10 . 1016/0043-
1354(92)90118-N.
[25]G. Lofrano, L. Rizzo, M. Grassi, and V. Belgiorno, (2009)"Aduanced oxidation
of catechol: A comparison among photocatalysis, Fenton and photo-Fenton pro-
cesses" Desalination 249(2):878-883. DOI: 10.1016/j .desal.2009.02.068.
[26]E. Chamarro, A. Marco, and S. Esplugas, (2001) "Use of Fenton reagent to
improve organic chemical biodegradability" Water Research 35(4): 1047-1051.
DOI: 10.1016/S0043-1354(00)00342-0.
[27] A. A. Burbano, D. D. Dionysiou, M. T. Suidan, and T. L. Richardson, (2005)
"Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton
reagent" Water Research 39(1): 107-118. DOI: 10. 1016/j .watres.2004.09.
008.
[28]W.Chu and C. W. Ma, (2000) "Quantitative prediction of direct and indirect dye
ozonation kinetics"Water Research 34 (12) :3153 3160. DOI:10.1016/S0043-
1354(00)00043-9.
[29]J. Chen, (2015) "Synthetic Tentile Fibers: Regenerated Cellulose Fibers" Tex-
tiles and Fashion Materials, Design and Technology, Woodhead Pub-
lishing Series in Textiles: 79-95. DOI: 10 . 1016 / B978 - 1 -84569 - 931-4 .
00004-0.
[30]K.-H. Tan. "Integration of physical-chemical and biological processes for the treat-
ment of EDTA and metal-EDTA complexes". (Master's thesis). Department of
Water Resources and Environmental Engineering, Tamkang Univercity, Taiwan,
2020.
[31] APHA . Standard methods for the examination of water and waste water. Wash-
ington, DC, 2005.
[32]X. Tian, C. Zhao, X. Ji, T. Feng, Y. Liu, and D. Bian, (2019) "The Correla-
tion Analysis of TOC and CODCr in Urban Sewage Treatment" E3S Web of
Conferences 136: DOI: 10.1051/e3sconf/201913606010.
[33]A. P. H. Association, A. W. W. Association, W. P. C. Federation, and W.E.
Federation. Standard methods for the cramination of water and wastewater. 2.
1912.
[34] A. ASTM. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water. 11.02. 02. 2002.
[35] A. Bowers, P. Gaddipati, W. Eckenfelder, and R. Monsen. Treatment of Toxic or
Refractory Wastewaters With Hydrogen Peroride. 21. International Association
on Water Pollution Research and Control, 1988, 477-486. DOI: 10.1016/b978-
1-4832-8439-2.50049-3.
[36]W.S. Kuo, (1999) "Effects of photolytic ozonation on biodegradability and toric-
ity of industrial wastewater" Journal of Environmental Science and Health
-Part A Toxic/Hazardous. Substances.and Environmental Engineering
34(4): 919-933. DOI: 10.1080/10934529909376873.
[37]C. J. Liang, C. J. Bruell, M. C. Marley, and K. L. Sperry, (2003) "Thermally ac-
tivated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane
(TCA) in aqueous systems and soil slurries" Soil Sediment Contamination
12(2): 207-228. DOI: 10.1080/713610970.
[38] I. M. Kolthoff and E. M. Carr, (1953) Volumetric Determination of Persulfate
in the Presence of Organic Substances" Analytical Chemistry 25(2): 298
301. DOI:10.1021/ac60074a024.
[39] S. N. Malik, T. Saratchandra, P. D. Tembhekar, K. V. Padoley, s. L. Mudliar,
and S. N. Mudliar, (2014)"Wet air oxidation induced enhanced biodegradability
of distillery effluent" Journal of Environmental Management 136: 132
138. DOI: 10. 1016/j.jenvman.2014.01.026
[40] W.Zhan, L. Yongsheng, W. Zulong, and Z.Zaiwu, (2014) "Study on the interfer-
ence of persulfate in the process of COD determination and its elimination" In-
dustrial Water Treatment: 08. DOI: 10.11894/1005-829x.2014.34(8) .078.
[41] J. M. Monteagudo, A. Duran, R. Gonzalez, and A. J. Exposito, (2015) "In situ
chemical oxidation of carbamazepine solutions using persulfate simultaneously
activated by heat energy, UV light, Fe2t ions, and H202" Applied Catalysis
B: Environmental 176-177: 120-129. DOI: 10. 1016/j .apcatb.2015.03.055.
[42] M. Muruganandham and M. Swaminathan, (2004)"Photochemical oridation of
reactive azo dye with UV-H202 process" Dyes and Pigments 62(3): 269-275. DOI: 10.1016/j.dyepig.2003.12.006.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信