淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0107201416584600
中文論文名稱 考慮尾流及後緣襟翼之風機葉片效能研究
英文論文名稱 The Effects of Wake Dynamics and Trailing Edge Flap on Wind Turbine Blade
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 邱建智
研究生英文姓名 Chien-Chih Chiu
學號 601430175
學位類別 碩士
語文別 中文
口試日期 2014-06-20
論文頁數 66頁
口試委員 指導教授-王怡仁
委員-馮朝剛
委員-陳蓉珊
中文關鍵字 葉片元素理論  Peters動態尾流理論  流固耦合  後緣襟翼 
英文關鍵字 Blade Element Theory  Peters Dynamics Wake Theory  Fluid-Structure Interaction  Trailing Edge Flap(TEF) 
學科別分類 學科別應用科學航空太空
中文摘要 本研究是探討風機葉片附加後緣襟翼並考慮此後緣襟翼的大小及攻角(index angle)對於對於風機葉片產生之推力及根部受力的影響。本文透過ANSYS的參數設定語法APDL (ANSYS Parametric Design Language)及FORTRAN程式的結合,探討結合流場及結構之間耦合的狀況,以及兩者相互影響之後流場對結構實際造成的影響。吾人將做一系列的討論,首先由矩形葉片驗證APDL語法與FORTRAN兩種程式結合的可行性,隨後再討論尾流效應對於矩形葉片之影響,最後將以實際之風機葉片附加此新式設計概念之後緣襟翼,模擬實際之應用情況。其中將對於後緣機翼之span大小、在風機葉片之位置及不同的index angle(TEF的flap angle)對於整片葉片之升力,推力及其對於葉片根部之受力做一具體的分析。
英文摘要 Wind power devices are now used to produce electricity, and commonly termed wind turbines. Load and performance calculations of wind turbines are usually performed by the Blade-Element/Momentum (BEM) method. However, the wake effects and the wake-blade structure interactions are less considered in most wind turbine analysis.
This research studied a dynamic wake and blade interacted wind turbine. The Peters dynamic wake theory was applied. The effects of the wake and the configuration of the modern trailing-edge-flap (TEF) on the wind turbine blade were analyzed. The lift and the stresses distribution on the blade were performed by using semi- analytic and numerical wake theory and the combination with APDL(ANSYS Parametric Design Language) and FORTRAN language method. Some comparisons of the wind turbine blade with several TEF parameters such as TEF span-wise length, mid-span position and index angle were fully discussed. The wind turbine blade thrust and root stresses were also be presented. The wake and the TEF configuration effects on a 5MW turbine blade in the lift distribution and stresses were studied to conclude this research.
論文目次 目錄
摘要i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論1
一、1研究動機1
一、2文獻回顧5
一、2.1非穩態流場理論5
一、2.2葉片結構動力理論6
一、2.3一般風機葉片之研究8
一、2.4後緣襟翼之研究8
一、3本文架構12
第二章 前置研究方法 14
二、1 動量理論 (Momentum Theory)14
二、2 葉片元素理論 (Blade Element Theory)15
二、3 離心力理論 (Centrifugal Force Theory)17
二、4 動力尾流理論 (Wake Theory)18
二、4.1 改良之 Peters 尾流理論22
第三章 風機葉片流固耦合分析26
矩形旋翼葉片結構與空氣動力耦合分析26
(A) 材料特性與尺寸26
(B) 使用元素26
(C) 網格化與分段面積27
(D) 離心力方程之建立27
(E) 空氣動力方程之建立28
第四章 結果與討論31
四、1 矩形風機葉片結構與空氣動力耦合APDL驗證31
四、2矩形風機葉片理論分析32
四、3 1KW風機葉片結構與動態尾流耦合分析驗證34
四、4 5MW風機葉片結構與動態尾流耦合分析驗證35
四、5 5MW風機葉片加裝後緣襟翼與動態尾流耦合分析36
四、5.1 尾流之影響 36
四、5.2 流固耦合效應之影響37
四、5.3 考慮尾流效應並加裝TEF之影響38
四、5.4 考慮尾流效應並加裝TEF對風機葉片之氣動力與結構影響 39
第五章 結論49
參考文獻51
附錄一 投稿版論文58


圖目錄
圖一 風力發電機種類 3
圖二 水平軸式風力機 4
圖三 垂直軸式風力機 4
圖四 動量理論示意圖 15
圖五 葉片元素示意圖 17
圖六 誘導流值比較圖 (參考文獻 [22], 前飛率 =0.149)24
圖七 和 的關係圖25
圖八SHELL181元素圖27
圖九 葉片空氣動力示意圖29
圖十 分析流程圖30
圖十一 矩形葉片力平衡圖示32
圖十二 矩形葉片升力曲線圖41
圖十三 葉片變形量圖 41
圖十四 葉片扭轉圖42
圖十五 葉片翼展向旋轉程度圖42
圖十六 上翼面蒙氏應力值圖43
圖十七 下翼面蒙氏應力值圖43
圖十八 1KW葉片升力曲線比較圖 44
圖十九 1KW葉片應力分佈比較圖 44
圖二十 5MW葉片9 m/s升力曲線驗證圖45
圖二十一 5MW葉片11.5 m/s升力曲線驗證圖45
圖二十二 TEF翼展R/6未加尾流之應力圖46
圖二十三 TEF翼展R/6加尾流之應力圖46
圖二十四 葉片加裝與未加TEF之升力曲線比較圖47
圖二十五 葉片是否加裝TEF之應力分佈比較圖47
圖二十六 葉片加裝TEF之示意圖 48


表目錄
表一 諧模數 (m) 及相對所取的模層函數的階數 (r)23
表二 材料特性表26
表三 不同TEF span 之結構分析37
表四 耦合疊代之氣動力及結構數據38
表五 不同TEF參數對葉片之影響 40

參考文獻 參考文獻
[1] 羅際航,具不同翼型葉片的水平式風力機之數值模擬,國立台灣科技大學機械工程研究所,中華民國九十五年七月。

[2]Theodorsen, T., "General Theory of Aerodynamic Instability and the Mechanism of Flutter," NACA R. 496,1935.

[3]Greenburg, J. M., "Airfoil in Sinusoidal Motion in a Pulsating Stream," NACA TN 1326, June 1946.

[4]Garrick, I. E., "Propulsion of Flapping and Oscillating Airfoil," NACA TR567, May 1936.

[5]Hodges, D. H., "Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pich-Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset and Blade Root Offset," NACA TMX-73 112, May 1976.

[6]Hodges, D. H. and Dowell, E. H., "Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Non-uniform Rotor Blades," NASA TN D-7818, December 1974.

[7]Hodges, D. H., Crespo de Silva, M. R. M., and Peters, D. A., "Nonlinear Effects in the Static and Dynamic Behavior of Beams and Rotor Blades," Vertica, Vol. 12, pp. 243-256, 1998.

[8]Hodges, D. H., Atilgan, A. R., Cesnik, C. E. S., and Fulton, M. V., "On A Simplified Strain Energy Function for Geometrically Nonlinear Behavior of Anisotropic Beams," Composite Engineering Vol. 2, pp. 513-526, 1992.

[9]Pai, P. F., and Nayfeh, A. H., " Three-Dimensional Nonlinear Vibrations of Composite Beams - I. Equations of Motion," Nonlinear Dynamics 1, Kluwer Academic Publishers, pp. 477-502, 1990.

[10]Pai, P. F., and Nayfeh, A. H., " Three-Dimensional Nonlinear Vibrations of Composite Beams - II. Flapwise Excitations," Nonlinear Dynamics 2, Kluwer Academic Publishers, pp. 1-34, 1991.

[11]Pai, P. F., " Nonlinear Flexural-Flexural-Torsional Dynamics of Metallic and Composite Beams," Ph. D. Thesis, Dept. of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, April 1990.

[12]Pai, P. F., and Nayfeh, A. H., " A Nonlinear Composite Beam Theory," Nonlinear Dynamics 3, Kluwer Academic Publishers, pp. 273-303, 1992

[13]Pai, P. F., and Palazotto, A. N., " Large-Deformation Analysis of Flexible Beams," International Journal of Solids and Structures, Vol. 33, No. 9, pp. 1335-1353, 1996.

[14]Pai, P. F., Anderson, T. J., and Weather, E. A., " Large-Deformation Tests and Total-Lagrangian Finite-Element Analysis of Flexible Beams," International Journal of Solids and Structures, Vol. 37, No. 21, pp. 2951-2980, 2000.

[15]Crespo de Silva, M. R. M., " A Comprehensive Analysis of The Dynamics of A Helicopter Rotor Blade," International Journal of Solids and Structures, Vol. 35, No. 7-8, pp. 619-635, 1998.

[16]Peters, D. A., and Johnson, M. J., "Finite-State Airloads For Deformable Airfoils on Fixed and Rotating Wings," AD-Vol. 44, Aeroelasticity and Fluid Structure Interaction Problems, ASME, pp. 1-28, 1994.

[17]Jeon, S. M., and Lee, I., "Aeroelastic Analysis of a Hingeless Rotor Blade in Forward Flight," AIAA Journal, Vol.38, No.5, pp. 843-850, May 2000.

[18]Fulton, M. V., and Ormiston, R. A., "Hover testing of a Small-Scale Rotor with On-Blade Elevons," Journal of the AHS, pp. 96-106, April, 2001.

[19]Nikhil, A. K., and Chopra, I., "Open-Loop Hover Testing of a Smart Rotor Model," AIAA Journal, Vol. 40, No. 8, pp. 1495-1502, August 2002.

[20]Kurdila, A. J., Li, J., Strganac, T., and Webb, G., "Nonlinear Control Methodologies for Hysteresis in PZT Actuated On-Blade Elevons," Journal of Aerospace Engineering, pp. 167-176, October 2003.

[21]鄭泗滄,蕭飛賓,周塏晉, "1KW風力發電葉片研究," 中華民國航太學會學術研討會,國立成功大學航空太空工程研究所,台中,中華民國一百年十一月五日,論文編號:05-06。

[22]Gates A.A., Adrezin, R.S., and Wei, F.-S., "Servo-Flap Rotor Power Improvement Through Wind Tunnel Testing," AHS.55th Annual Forum, Montreal , Quebec, Canada, May 25-27, 1999.

[23]Gates A.A., Adrezin, R.S., and Wei, F.-S., "Thin Body Shape Optimization Technique Using Wind Tunnel Test Data," AIAA paper, AIAA-99-0836,1999.

[24]Wei, F.-S., "Advanced Servo-Flap Rotor Using Variable Blade Index Angle Control," 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials, Kissimmee, Florida, April 7-10, 1997.

[25] Wei, F.-S., and Tomashofski, C.A., "HHC and IBC For a Servo-Flap Controlled Main Rotor," the 7th International Workshop on Dynamics and Aeroelastic stability modeling of Rotor craft Systems, St. Louis, Missouri, October 14-16, 1997

[26]Straub, F. K. and Charles, B. D., "Aeroelastic Analysis of Rotors with Trailing Edge Flaps Using Comprehensive Codes," Journal of the American Helicopter Society, Vol. 46, (3): 192-199, July 2001.

[27]Shen, J. and Chopra, I., "Actuation Requirements for a Swashplateless Helicopter Control System With Trailing-edge Flaps," In Proceedings of the 43 AIAA/ASME ASCE/AHS structure, structure dynamics, and materials conference and 10 AIAA/ASME/AHS adaptive structures conference, number AIAA-2002-1444, pp. 11, Denver, Colorado, April 2002

[28]Leonardo Bergami, "Adaptive Trailing Edge Flaps for Active Load Reduction," Wind Energy Division, Ris DTU-National Laboratory for Sustainable Energy, VEA-118.Frederiksborgvej 399,4000 Roskilde, Denmark

[29]Yi-Ren Wang, Yin-Shing Chang, "The Effects of An On-Blade Trailing Edge Flap on Rotor Dynamics in Hover," Journal of Aeronautics, Astronautics and Aviation, Series A,Vol.43, No.4, pp. 241-250 , 2011

[30]Mac Gaunaa, Peter B. Anderson, Christian D. Bak, Thomas
Buhl, "Adaptive Trailing Edge Flap - Recent development within smart blades,"2010 Wind Turbine Blade Workshop, Albuquerque, NM, Aeroelastic Design Program Wind Energy Division, Riso DTU.

[31]Helge Aa. Madsen, Peter B. Andersen, Tom L. Andersen, Christian Bak, Thomas Buhl, "The Potentials of the Controllable Rubber Trailing Edge Flap(CRTEF) ," Wind Energy Division, Riso DTU-National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. 49, Dk-4000 Roskilde, Denmark.

[32]Andersen P.B., Henriksen L., Gaunaa M., Bak C., Buhl T.,
"Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors," WIND ENERGY (2009) Published online. DOl:10.1002/we

[33]He, C. J., "Development and Application of a Generalized Dynamics Wake Theory for Lifting Rotors," Ph. D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, July, 1989.

[34]Peters, D. A., and He, C. J., "Comparison of Measured Induced Velocities with Results From a Closed Form Finite State Wake Model in Forward Flight," the 45th Annual National Forum of the American Helicopter Society, Boston, Massachusetts, May 22-24,1989.

[35]Su, A., "Application of a State Space Wake Model to Elastic Blade Flapping in Hover," Ph. D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, August, 1989.

[36]Wang, Y.-R., "The Effect of Wake Dynamics on Rotor Eigenvalues in Forward Flight," Ph. D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, May, 1992.

[37]張穎巽,後緣襟翼在非線性複材葉片之分析,淡江大學航空太空工程學系研究所,中華民國九十四年六月。

[38]林宏益,複材葉片之旋翼後緣襟翼分析,淡江大學航空太空工程學系研究所,中華民國九十三年六月。

[39]張鴻文,動態失速效應下主旋翼耦合系統之動態分析,淡江大學航空太空工程學系研究所,中華民國九十年六月。

[40]張立,旋翼葉片拍動及尾流耦合系統之空氣動力分析,淡江大學機械工程研究所,中華民國八十五年六月。

[41]工業技術研究院,公共建設設置風力發電系統參考手冊

[42]周塏晉,1KW風力發電葉片與塔架設計及監控系統研究,國立成 功大學航空太空工程研究所,中華民國一百年七月。

[43]Lee, J.W., Lee, J.S., Han, J.H., Shin, H.K.,“Aeroelastic analysis of wind turbine blades based on modified strip theory,”Department of Aerospace Engineering, KAIST, 335 Gwahangno,Yuseong-gu, 305-701 Daejeon, ROK, 2012.

[44]Shen, W.,Jun, W., Soensen, J.N., “Shape optimization of wind turbine blades,”Wind Energy 12, 781-803,2009.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信