§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0107201322302700
DOI 10.6846/TKU.2013.00026
論文名稱(中文) X光吸收光譜研究Li:WO3電致色變之電子結構及原子結構
論文名稱(英文) Correlation Between the Electrochromic Properties and the Electronic/Atomic Structures of Li:WO3 Studied by X-ray Absorption Spectroscopy
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 陳鈞順
研究生(英文) Jiun-Shuen Chen
學號 699210075
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-21
論文頁數 49頁
口試委員 指導教授 - 彭維鋒(wfpong@mail.tku.edu.tw)
委員 - 李志甫(jflee@nsrrc.org.tw)
委員 - 張經霖(clchang@mail.tku.edu.tw)
關鍵字(中) 電致色變
X光吸收光譜
延伸X光吸收精細結構
關鍵字(英) Electrochromic
XAS
EXAFS
第三語言關鍵字
學科別分類
中文摘要
本論文主要以臨場X光吸收光譜實驗研究三種不同製程(退火溫度與前置溶液)的氧化鎢薄膜的耐久性以及在重複的染色和退色過程的原子和電子結構。染色過程運用外加正電流使鋰離子鑲嵌進氧化鎢薄膜,薄膜呈現藍色,當外加電流逆電流時薄膜回到原本透明狀態。實驗包含W L3-edge X光吸收近邊緣結構(X-ray absorption near edge structure,XANES)以及W L3-edge延伸X光吸收精細結構 (Extended X-ray absorption fine structure , EXAFS)。實驗顯示在反覆的染色過程中氧化鎢薄膜的鎢氧八面體變形使結構有序程度下降,在電子結構上奈米晶粒氧化鎢薄膜在第一個染色週期有近 97% 的回復性,與樣品在可見光區的穿透率變化一致,優越的電致色變特性可能是由於在局域上微觀的結構有較優越的鋰離子擴散性和電子的傳導性。
英文摘要
In-situ x-ray absorption spectroscopy of three different types of tungsten oxide thin films were performed to study the electronic structure of the films with repetitive cycles of coloration and bleaching process. In-situ W L3-edge  x-ray absorption near edge spectroscopy (XANES) of crystalline and nanocrystalline tungsten oxide films showed that with the coloration the intensity of the spectra decreases and it increases with bleaching, which corresponds to the filling and unfilling of the density of the conduction band, respectively. After repeated cycles of coloration and bleaching the structural disordering was observed from the second derivative of W L3-edge XANES spectra. In-situ extended x-ray absorption fine structure spectra reveal that the atomic structure of the samples remain unaltered after coloration and bleaching. The nanocrystalline tungsten oxide film showed recovery of (~ 97 %) electronic and atomic structure after the first cycle of coloration and bleaching, which was substantially higher compared to other two crystalline samples. It reveals that nanocrystalline sample has superior electrochromic properties than crystalline samples.
第三語言摘要
論文目次
致謝	I
中文摘要	II
英文摘要	III
目錄	IV
圖表目錄	V
第一章、 緒論	1
第二章、 X光吸收光譜簡介	6
(一)、吸收邊緣與E0值	8
(二)、X光吸收近邊緣結構(XANES)	9
(三)、延伸X光吸收精細結構(EXAFS) 	10
(四)、實驗方法	15
(五)、數據分析	19
第三章、 實驗數據分析與討論	23
(一)、樣品製備與量測	23
     (二)、X光吸收近邊緣結構(XANES)	27
(三)、延伸X光吸收精細結構(EXAFS) 	38
第四章、結論	44
參考文獻	45

圖表目錄
圖1-1電致色片材料著色變化圖	1
圖1-2智慧玻璃圖	1
圖2-1 光子能量與銅吸收截面關係圖	7
圖2-2 XANES與EXAFS分界圖		12
圖2-3 光電子平均自由路徑與能量關係圖	12
圖2-4 單一散射與多重散射之圖像(a)為單一散射路程示意圖	13
      (b)為多重散射路程示意圖	13
圖2-5 射出電子受鄰近原子的背向散射,而產生干涉現象	14
(a)建設性干涉 (b)破壞性干涉	14
圖2-6 X光吸收光譜實驗示意圖	16
圖2-7 三種光譜量測方法	18
圖2-8 X光吸收光譜之數據分析流程	19
圖3-1三氧化鎢鑲嵌鋰離子示意圖	24
圖3-2 X光繞射圖	25
圖3-3電流裝置示意圖與樣品照片	26
圖3-4 (a) 樣品400T-0之W L3-edge X光吸收近邊緣結構	30
圖3-4 (b) 樣品400T-045之W L3-edge X光吸收近邊緣結構	30
圖3-4 (c) 樣品450T-045之W L3-edge X光吸收近邊緣結構	31
圖3-4 (d) 各樣品W L3-edge 扣除一個arctangent背景後積分面積圖  31
表3-1 各樣品W L3-edge白線面積積分恢復百分比表	32
圖3-5 (a) 樣品400T-0之W L3-edge光譜二次微分圖	34
圖3-5 (b) 樣品400T-045之W L3-edge光譜二次微分圖	35
圖3-5 (c) 樣品450T-045之W L3-edge光譜二次微分圖	36
圖3-5 (d) W L3-edge光譜不同樣品二次微分圖t2g 和eg分裂圖	37
圖3-7 (a) 樣品400T-0之W L3-edge延伸X光吸收精結構傅立葉轉換圖	39
圖3-7 (b) 樣品400T-045之W L3-edge延伸X光吸收精結構傅立葉轉換圖	40
圖3-7 (c) 樣品450T-045之W L3-edge延伸X光吸收精結構傅立葉轉換圖	41
圖3-8 三氧化鎢薄膜在著色和退色時的電子結構示意圖	43
參考文獻
1.	M. Gratzel, Nature, 2001, 409, 575.
2.	G. Niklasson and C. Granqvist, Journal of Materials Chemistry, 2007, 17, 127.
3.	K. Bange, Solar Energy Materials & Solar Cells, 1999, 58, 1.
4.	D. R. Rosseinsky and R. J. Mortimer, Advanced Materials, 2001, 13, 783.
5.	D. T. Gillaspie, R. C. Tenent, and A. C. Dillon, Journal of Materials Chemistry, 2010, 20, 9585.
6.	S. K. Deb, Solar Energy Materials and Solar Cells, 2008, 92, 245.
7.	C. G. Granqvist, Solar Energy Materials & Solar Cells, 2000, 60, 201.
8.	G. Brauer, Surface and Coatings Technology, 1999, 112, 358.
9.	M. Vasilopoulou, A. Botsialas, P. Argitis, G. Aspiotis, G. Papadimitropoulos, and D. Davazoglou, Physica Status Solidi (c), 2008, 5, 3868.
10.	S.-H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, and A. C. Dillon, Advanced Materials, 2006, 18, 763.
11.	P. J. Wojcik, A. S. Cruz, L. Santos, L. Pereira, R. Martins, and E. Fortunato, Journal of Materials Chemistry, 2012, 22, 13268.
12.	J. Scarminio, A. Urbano, and B. Gardes, Materials chemistry and physics, 1999, 61, 143.
13.	E. Ozkan, S.-H. Lee, C. E. Tracy, J. R. Pitts, and S. K. Deb, Solar Energy Materials and Solar Cells, 2003, 79, 439.
14.	W. Wu, W. Liao, J. Chen, and J. Wu, Chemical Physics and Physical Chemistry, 2010, 11, 3306.
15.	A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nature materials, 2005, 4, 366.
16.	K. Srinivasa Rao, B. Rajini Kanth, G. Srujana Devi, and P. K. Mukhopadhyay, Journal of Materials Science: Materials in Electronics, 2011, 22, 1466.
17.	Y. Zhang, J. Yuan, J. Le, L. Song, and X. Hu, Solar Energy Materials and Solar Cells, 2009, 93, 1338.
18.	S. Y. Park, J. M. Lee, C. Noh, and S. U. Son, Journal of Materials Chemistry, 2009, 19, 7959.
19.	D. Ma, G. Shi, H. Wang, Q. Zhang, and Y. Li, Journal of Materials Chemistry A, 2013, 1, 684.
20.	H.-S. Shim, J. W. Kim, Y.-E. Sung, and W. B. Kim, Solar Energy Materials and Solar Cells, 2009, 93, 2062.
21.	J. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, and J. P. Tu, Solar Energy Materials and Solar Cells, 2011, 95, 2107.
22.	D. Ma, H. Wang, Q. Zhang, and Y. Li, Journal of Materials Chemistry, 2012, 22, 16633.
23.	H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, Advanced Functional Materials, 2011, 21, 2175.
24.	M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J. C. Bernede, and B. El Idrissi, Thin Solid Films, 2001, 397, 238.
25.	R. S. Crandall; and B. W. Faughnan, Physical Review Letters, 1977, 39, 232.
26.	A. Kuzmin and J. Purans, Journal of Physics: Condensed Matter, 1993, 5, 2333.
27.	S. Hashimoto and H. Matsuoka, Journal of Applied Physics, 1991, 69, 933.
28.	E. Cazzanelli, G. Mariotto, C. Vinegoni, A. Kuzmin, J. Purans, D. Fisica, U. Calabria, and R. Cosenza, Ionics, 1999, 5, 335.
29.	M. Saenger, T. Hoing, B. Robertson, R. Billa, T. Hofmann, E. Schubert, and M. Schubert, Physical Review B, 2008, 78, 245205.
30.	T. Pauporte, Y. Soldo-Olivier, and R. Faure, Journal of Electroanalytical Chemistry, 2004, 562, 111.
31.	C.-K. Wang, D. R. Sahu, S.-C. Wang, C.-K. Lin, and J.-L. Huang, Journal of Physics D: Applied Physics, 2012, 45, 225303.
32.	Y. Masuda, T. Ohji, and K. Kato, ACS applied materials & interfaces, 2012, 4, 1666.
33.	A. Balerna, E. Bernieri, E. Burattini, A. Kuzmin, A. Lusis, J. Purans, and P. Cikmach, Nuclear Instruments and Methods in Physics Research A, 1991, 308, 240.
34.	S. Yamazoe, Y. Hitomi, T. Shishido, and T. Tanaka, Journal of Physical Chemistry C, 2008, 112, 6869.
35.	S. Bare, G. Mitchell, J. J. Maj;, G. E. Vrieland;, and J. L. Gland, The Journal of Physical Chemistry, 1993, 97, 6048.
36.	J. Purans, a. Kuzmin, P. Parent, and C. Laffon, Electrochimica Acta, 2001, 46, 1973.
37.	J. Purans, A. Kuzmin, P. Parent, and C. Laffon, Ionics, 1998, 4, 101.
38.	F. D. Groot, M. Grioni, and J. Fuggle, Physical Review B, 1989, 40, 5715.
39.	B. Ravel and M. Newville, Journal of synchrotron radiation, 2005, 12, 537.
40.	Y. L. Soo, P. J. Chen, S. H. Huang, T. J. Shiu, T. Y. Tsai, Y. H. Chow, Y. C. Lin, S. C. Weng, S. L. Chang, G. Wang, C. L. Cheung, R. F. Sabirianov, W. N. Mei, F. Namavar, H. Haider, K. L. Garvin, J. F. Lee, H. Y. Lee, and P. P. Chu, Journal of Applied Physics, 2008, 104, 113535.
41.	T. Pauporte, Y. Soldo-Olivier, and R. Faure, The Journal of Physical Chemistry B, 2003, 107, 8861.
42.	C. Julien, Materials Science and Engineering: R, 2003, 40, 47.
43.	F. Lin, J. Cheng, C. Engtrakul, A. C. Dillon, D. Nordlund, R. G. Moore, T.-C. Weng, S. K. R. Williams, and R. M. Richards, Journal of Materials Chemistry, 2012, 22, 16817.
44.	J. Zhu, S. Wei, M. J. Alexander, T. D. Dang, T. C. Ho, and Z. Guo, Advanced Functional Materials, 2010, 20, 3076. 
45.   "X-Ray Absorption : Principles, Application, Techniques of EXAFS, SEXAFS, SEXAFS and XANES", edited by D. C. Koningsberger and R. Prins, Chem. Analysis 92 (Wiley, New York, 1988).
46.  D. E. Sayers, E. A. Stern, F. W. Lytle, Physical Review Letters, 1971, 27, 1024.
47.  “NEXAFS Spectroscopy”, edited by Joachim Stohr (Springer-Verlag 1991). 
48.  E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, and D. Haskel, Physical B, 1995, 208&209, 117.
49.  “EXAFS and Near edge Structure”, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay 1983).
50.  "EXAFS , Basic Principle and Data Analysis" , edited by Boon K. Teo (Springer-Verlag 1986)
51.   “安全訓練手冊”,新竹同步輻射研究中心, 2001.
52.  H. M. Tsai, K. Asokan, C. W. Pao, J. W. Chiou, C. H. Du, W. F. Pong, M.-H. Tsai, and L. Y. Jang, Appl. Phys. Lett., 2007, 91, 022109.
53.  C.-K. Wang, D. R. Sahu, S.-C. Wang, C.-K. Lin, and J.-L. Huang, J. Phys. D: Appl. Phys., 2012, 45, 225303.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信