淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0107201115352800
中文論文名稱 各種屋頂與環境材質對超寬頻通道特性影響之分析
英文論文名稱 Comparison of UWB Communication Characteristics for Various Roofs and Materials of Environments
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 廖晧坊
研究生英文姓名 Hao-Fang Liao
電子信箱 jack1986112@yahoo.com.tw
學號 698440079
學位類別 碩士
語文別 中文
口試日期 2011-06-07
論文頁數 66頁
口試委員 指導教授-丘建青
委員-李慶烈
委員-袁正泰
委員-林信標
委員-陳建宏
中文關鍵字 超寬頻  多路徑  二位元脈衝振幅調變  位元錯誤率  失效率  均方根延遲擴散  各種屋頂  通道特性 
英文關鍵字 Ultra-wide band  Multi-path  Binary pulse amplitude modulation  Bit error rate  Outage probability  RMS delay spread  various roofs  communication characteristics 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文之研究目的,在於利用射線彈跳法去模擬,求得超頻寬通訊在五種不同屋頂和兩種不同環境材質的脈衝響應,並在求得脈衝響應後去計算和比較超寬頻通訊的通道特性。
這五種不同屋頂分別為:1.平面屋頂 2.三角形屋頂 3.栱形屋頂 4.金字塔形屋頂 5.折線形屋頂。兩種不同環境材質分別為:1.混凝土2.鐵皮屋。透過這些多路徑通道的脈衝響應,使用二進制的脈波振幅調變(Binary Pulse Amplitude Modulation, BPAM)方法,進而計算超寬頻通訊系統的位元錯誤率(Bit Error Rate,BER)。我們可以從數值結果得知屋頂形狀與環境材質其多路徑對於通訊位元錯誤率性能的影響。
在本篇論文中所比較的通道特性參數,包含有均方根延遲擴散 (RMS delay spread) 、平均超額延遲擴散(mean excess delay spread)、最大的脈衝響應差值小於10dB的個數(NP10dB)與占總能量85%的脈衝個數(NP85)及位元錯誤率。由於無線電波在室內環境中容易受到遮蔽物的影響,這些遮蔽物例如:牆壁、天花板以及傢俱等,使得無線電波經由多重反射、繞射等路徑而到達接收天線,此一現象稱之為多路徑效應(multi-path effect)。由於此效應造成的符際間干擾(InterSymbol Inference,ISI),使得通訊位元錯誤率及失效率(outage probability)增加,亦即通話品質變差。在這篇論文裡,我們將探討室內的屋頂形狀與環境材質在超寬頻通訊上對位元錯誤率的影響。最後,我們比較這五種不同形狀的屋頂在傳輸率為100MB、訊號與雜訊比(SNR)為20dB下的失效率,並發現到目前這些模擬的形,在金字塔型屋頂有較小的錯誤率且性能明顯的好於其他屋頂形狀。
英文摘要 A comparison of ultra-wideband (UWB) communication characteristics for five different geometrical shapes of roof in the materials of concrete and iron in the same environments are investigated. These five roofs include the flat shape roof, the triangle shape roof, the arched shape roof, the pyramid shape roof, and the mansard shape roof.
The impulse responses of these roofs are computed by applying shooting and bouncing ray/image (SBR/Image) techniques and inverse Fourier transform. By using the impulse response of these multi-path channels, the mean excess delay, root mean square (RMS) delay spread, and the number of multi-path arrivals within 10 dB of the peak multi-path arrival (NP10dB), and the number of paths required to meet the 85% energy capture threshold (NP(85%)) for these five roofs could be obtained. Numerical results show that the RMS delay spread for the pyramid shape roof is smaller than those for the other shapes. And the RMS delay spread for the flat shape roof is greater than the other roofs. Finally, the outage probability for binary antipodal-pulse amplitude modulation (B-PAM) system has been calculated.
論文目次 目錄
第一章 概論 …………………………………………………………P.01
1.1 研究背景 ………………………………………………………P.01
1.2 研究動機 ………………………………………………………p.05
1.3 研究內容簡介 …………………………………………………p.08

第二章 傳輸通道系統描述 ………………………………………p.09
2.1 無線電波傳播通道分析 ………………………………………P.09
2.2 通道計算模型分析 ……………………………………………P.11
2.2.1 利用射線追蹤法計算出頻域響應 …………………………P.12
2.2.2 利用何米特法與快速反傅立葉轉換計算出時域響應 ……P.15
2.3 射線彈跳追蹤法程式流程分析 ………………………………P.17
2.4 系統模擬架構 …………………………………………………P.21
2.4.1 發射訊號波形 ………………………………………………P.21
2.4.2 位元錯誤率之計算 …………………………………………P.22

第三章 模擬數值結果 ……………………………………………P.27
3.1 模擬實驗的環境 ………………………………………………P.27
3.2 模擬結果分析與比較 …………………………………………P.33
第四章 結論 ………………………………………………………P.51
參考文獻 ……………………………………………………………P.53
附錄 …………………………………………………………………P.57


圖目錄
圖 2.1:求得通道脈衝響應的步驟 ………………………………P.11
圖 2.2:何米特程序的信號處理步驟與快速反傅立葉轉換過程…P.16
圖 2.3:SBR/Image 程式流程圖 …………………………………P.20
圖 2.4:二位元脈衝振幅調變位元錯誤率系統架構圖 …………P.21
圖 2.5:傳送高斯二次微分脈波的波型 …………………………P.22
圖 2.6:FCC對室內及室外超寬頻系統的頻段及輻射能量限制 …P.23
圖 3.1:各種屋頂形狀之Three-dimensional (3D) 立體圖…… P.29
圖 3.2:室內環境平面圖 …………………………………………P.32
圖 3.3 (a):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(平面) … P.37
圖 3.3 (b):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(三角形) … P.38
圖 3.3 (c):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(栱形) …… P.39
圖 3.3 (d):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(金字塔形). P.40
圖 3.3 (e):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(折線形) … P.41
圖 3.4 (a):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(平面) …… P.42
圖 3.4 (b):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(三角形) … P.43
圖 3.4 (c):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(栱形) …… P.44
圖 3.4 (d):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(金字塔形) .. P.45
圖 3.4 (e):室內走道於Rx(0.875,0.125,1.5)m之脈衝響應(折線形) … P.46
圖 3.5:五種不同屋頂的均方根延遲擴散累積分佈圖(混凝土) ……P.47
圖 3.6:五種不同屋頂的均方根延遲擴散累積分佈圖(鐵皮屋) ……P.48
圖 3.7:五種不同屋頂其失效率比較圖(混凝土) ………………P.49
圖 3.8:五種不同屋頂其失效率比較圖(鐵皮屋) ………………P.50


表目錄
表 3.1:五種不同屋頂在超寬頻通訊下的通道參數一覽表(混凝土)… P.47
表 3.2:五種不同屋頂在超寬頻通訊下的通道參數一覽表(鐵皮屋)… P.48



參考文獻 [1]. M.Z. Win, R.A. Scholtz, and M.A. Barnes, “Ultra-Wide Bandwidth Signal Propagation for Indoor Wireless Communications,” IEEE conference on Towards the Knowledge Millennium, vol.1,pp. 56 – 60, June 1997.
[2]. Hovinen, V., Hamalainen, M. and Patsi, T.; “Ultra Wideband Indoor Radio Channel Models: Preliminary Results,” IEEE conference on Ultra Wideband Systems and Technologies, May 2002.
[3]. D. Cassioli, M.Z. Win, and A.F. Molisch, “The Ultra-Wide Bandwidth Indoor Channel: From Statistical Model to Simulations,” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, pp. 1247-1257, August 2002.
[4]. J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A.F. Molisch, “Statistical Analysis of the UWB Channel in an Industrial Environment,” IEEE Conference on Vehicular Technology , Vol. 1, pp. 81 - 85, September 2004.
[5]. Urban, R.; Zvanovec, S; “On the Indoor Propagation of UWB Signals,” Conference on Microwave Techniques, COMITE 2008. 14th. pp.1 - 4, April 2008.
[6]. Al-Tamimi, H.; Al-Qaraawy, S.M; “UWB propagation indoor statistical channel modeling,” ISECS International Colloquium on Computing, Communication, Control, and Management, Vol. 1, pp. 379 - 383, Aug 2009.
[7]. Haddad, Edgar; Malhouroux, Nadine; Pajusco, Patrice; Ney, Michel; “On the frequency dependence of UWB indoor channel parameters: 3D ray tracing and measurement,” Conference on Antennas and Propagation (EuCAP), pp. 1 – 5, April 2010.
[8]. A. H. Muquaible, “Characterization of ultra-wideband communication channels,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, March 2003.
[9]. J. Keignart and N. Daniele, “Subnanosecond UWB channel sounding in frequency and temporal domain,” IEEE Conference on Ultra-Wideband System Technologies, pp. 25-30, May 2002.
[10]. R.J.-M. Cramer, R. A. Scholtz, and M. Z. Win, “Evaluation of an ultra-wide-band propagation channel,” IEEE Transactions on Antennas and Propagation, Vol. AP-50, pp. 561-570, May 2002.
[11]. R. A. Scholtz, R.J.-M. Cramer, and M. Z. Win, “Evaluation of the propagation characteristics of ultra-wideband communication channels,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 626-630, June 1998.
[12]. Geng, Suiyan; Vainikainen, Pertti; “Clustering characterization for UWB indoor communications,” Conference on Antennas and Propagation (EuCAP), pp. 1 – 5, Aug 2010.
[13]. Manositthichai, N.; Promwong, S.; “A statistical UWB transmission networks in an indoor environment for PAN systems,” International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2009. 6th. Vol. 2, pp. 918 – 921, May 2009.
[14]. B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE conference on Ultra-Wideband System Technologies, pp. 1-5, May 2002
[15]. Y. Zhang, “Ultra-Wide Bandwidth Channel Analysis In Time Domain Using 3-D Ray Tracing,” High Frequency Postgraduate Student Colloquium of IEEE, pp. 189-194, September 2004.
[16]. S. Woo, H. Yang, M. Park, and B. Kang, “Phase-Included Simulation of UWB Channel,” IEICE Transaction. Communication., Vol. E88-B, No. 3, pp. 1294-1297, March 2005.
[17]. A. M. Attiya and A. Saffaai-Jazi, “Simulation of Ultra-Wideband Indoor Propagation,” Microwave and Optical Technology Letters, Vol. 42, No. 2, pp. 103-108, July 2004.
[18]. S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoor radio propagation in a corridor,” IEICE Trans. Electron., Vol. E78-C, pp. 1058-1062, Aug. 1995.
[19]. S. H. Chen and S. K. Jeng ,“SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEICE Trans. Veh. Technol., Vol. 45, pp. 570-578, Aug. 1996.
[20]. C. H. Chen, C. L. Liu, C. C. Chiu and T. M. Hu, “Ultra-Wide Band Channel Calculation by SBR/Image Techniques for Indoor Communication,” Journal of Electromagnetic Waves and Applications Vol. 20, No. 1, pp. 2169-2179, 2006.
[21]. S. H. Chen and S. K. Jeng, “An SBR/Image approach for indoor radio propagation in a corridor,” IEICE Trans. Electron., Vol. E78-C, pp. 1058-1062, Aug. 1995.
[22]. S. H. Chen and S. K. Jeng, “SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEEE Trans. Veh. Technol., Vol. 45, pp. 570-578, Aug. 1996.
[23]. I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
[24]. E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Web and Matlab, Prentice-Hall, 2000.
[25]. B. Sklar, Digital Communications:Fundamentals and Applications 2/e, Prentice Hall PTR, 2004
[26]. Zhi Tian; Giannakis, G.B., “BER sensitivity to mistiming in ultra-wideband impulse Radios-part I: nonrandom channels,” IEEE Transactions on Signal Processing, pp. 1550 - 1560, Apr 2005.
[27]. Siwiak, K.; Withington, P.; Phelan, S., “Ultra-wide band radio: the emergence of an important new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring. Vol. 2, pp. 1169 – 1172, May 2001.
[28]. Siwiak, K., “Ultra-wide band radio: introducing a new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring. Vol. 2, pp. 1088 - 1093, May 2001
[29]. Saberinia, E.; Tewfik, A.H, “Single and multi-carrier UWB communications,”IEEE Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings. Vol. 2, pp. 343 - 346 , July 2003.
[30]. Zhi Tian; Giannakis, G.B., “BER sensitivity to mistiming in ultra-wideband impulse Radios-part I: nonrandom channels,” IEEE Transactions on Speech, and Signal Processing,Vol. 53, pp. 1550-1560, Apr 2005.
[31]. Zhi Tian; Giannakis, G.B., “BER sensitivity to mistiming in ultra-wideband impulse radios - part II: fading channels,” IEEE Transactions on Speech, and Signal Processing.,Vol. 53, pp. 1897 - 1907, May 2005.
[32]. Chien-Ching Chiu; Chi-Ping Wang, “Bit error rate performance of high-speed tunnel communication,” IEEE MTT-S International Microwave and Optoelectronics Conference, 1997., Vol. 1, pp. 186 - 191, Aug. 1997.
[33]. Tong Lu; Yubin Yang; Feng Su; Zhengxing Sun; “Semi-automatic Roof Reconstruction,” Conference on Document Analysis and Recognition, ICDAR '09. 10th International. pp. 723 – 727, July 2009.
[34]. Yan Zhao, Yang Hao, Akram Alomainy, and Clive Parini, “UWB on-body radio channel modeling using ray theory and subband FDTD method,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54, pp. 1827-1835, June 2006
[35]. A. S. Jazi, S. M. Riad, A. Muqaibel, and A. Bayram, “Through the Wall Propagation and Material Characterization,” DARPA NETEX Program Report, Nov. 2002.
[36]. R. Michael Buehrer, Ahmad Safaai-Jazi, William Davis, and Dennis Sweeney, “Ultra-wideband Propagation Measurements and Modeling Final Report,” DARPA NETEX Program Virginia Tech, Chapter 3, pp. 38-216, Jan 2004
[37]. A. Muqaibel, A. Safaai-Jazi, A. Bayram, A.M. Attiya and S.M. Riad, “Ultrawideband through-the-wall propagation,” IEE Proceedings Microwaves, Antennas and Propagation, pp. 581-588, Dec. 2005.
[38]. Imada, S.; Ohtsuki, T., “Pre-RAKE diversity combining for UWB systems in IEEE 802.15 UWB multipath channel,” IEEE Joint with Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International Workshop on Ultra Wideband Systems, pp. 236 - 240 , May 2004.
[39]. Gargin, D.J., “A fast and reliable acquisition scheme for detecting ultra wide-band impulse radio signals in the presence of multi-path and multiple access interference” 2004 International Workshop on Ultra Wideband Systems, pp. 106 - 110, May 2004.
[40]. T. S. Rappaport, Wireless Communications, New Jersey: Prentice Hall PTR, 2002.
[41]. Hamalainen, M.; Iinatti, J., “Analysis of Interference on DS-UWB System in AWGN Channel,” 2005 IEEE International Conference on Ultra-Wideband, pp. 719 - 723, 2005.
[42]. Mielczarek, B.; Wessman, M.O.; Svensson, A.., “Performance of coherent UWB Rake receivers with channel estimators,” IEEE 58th Vehicular Technology Conference, pp. 1880 - 1884, Oct. 2003.
[43]. Kandukuri, S.; Boyd, S., “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Transactions on Wireless Communications, pp. 46 - 55, 2002.
[44]. Janson, M.; Pontes, J.; Sturm, C.; Zwick, T.; “BER Simulations of a UWB Spatial Multiplexing System Using an Extended Ray-Tracing Approach” IEEE, Antennas and Wireless Propagation Letters, Vol. 9, pp. 1096 – 1098, 2010.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信