淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0107201016454700
中文論文名稱 多天線系統在高速度環境下之適應性調變與編碼
英文論文名稱 Adaptive Modulation and Coding for MIMO System In High Speed Environment
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 鄭暉弘
研究生英文姓名 Hui-Hun Cheng
學號 697440278
學位類別 碩士
語文別 中文
口試日期 2010-06-17
論文頁數 42頁
口試委員 指導教授-李揚漢
委員-陳懷恩
委員-許獻聰
委員-李永定
委員-詹益光
中文關鍵字 正交分頻多工  都卜勒  多天線  適應性  調變  編碼 
英文關鍵字 OFDM  Doppler  MIMO  Adaptive  Modulation  Coding 
學科別分類 學科別應用科學電機及電子
中文摘要 新一代的通訊系統採用正交分頻多工(Orthogonal frequency-division multiplexing)作為傳輸技術,除了傳輸技術的改變,支援高速移動中的使用者,確保移動時不會有斷話的情形發生,也是新一代通訊系統重要的課題之ㄧ。在移動通道中,都卜勒擴散(Doppler spread)會破壞子載波之間的正交性,將導致子載波間互相干擾(Inter Carrier Interference),嚴重影響系統效能。

使用者遠離時,因為與基地台的距離發生變化,導致接收訊號越來越差,此時想要維持良好的服務品質(Quality of Services),基地台可以利用適應性調變與編碼(Adaptive Modulation and Coding)技術,適時的改變調變與編碼方式,以維持服務品質。

本論文主要在討論調變(Modulation)、編碼(Coding)以及多天線技術(Multiple-Input Multiple-Output),在高速環境下,對於系統效能的影響,並且提供在不同訊雜比(Signal Noise Ratio)、不同速度下,使用何種調變與編碼的建議表。
英文摘要 Most generation wireless communication systems are based on Orthogonal frequency-division multiplexing transmission technology. Besides the transmission technology changes, to avoid break down when users communicate by phone and support users in high speed environment are important. In a moving channel, doppler spread will cause inter carrier interference. It will affect performance seriously.

When the users far away form base station, the received signal will become weak. If we want to keep good quality of services, we can use adaptive modulation and coding technology to change the combination of modulation and coding.

In this paper, we will discuss the performance in different modulation, coding, and MIMO system in high speed environment and give an adaptive modulation and coding table in different speed and signal noise ratio.
論文目次 目錄
第一章 緒論 1
1.1 研究動機與目的 1
1.2 章節介紹 2
第二章 通道模型 3
2.1 都卜勒效應 3
2.2 快速衰落模型 4
第三章 無線通訊系統架構 8
3.1 MIMO系統 8
3.2 系統模擬架構 11
3.3 不同速度下之效能模擬 13
3.4 不同速度下之BER極限值 19
第四章 高速度下之適應性編碼與調變選擇 21
4.1 調變與碼率之增益比較 21
4.2 不同速度下之適應性調變與編碼建議表 28
第五章 基地台距離模擬 29
5.1 距離與SNR的關係 29
5.2 通道損失模型 31
5.3 不同調變編碼之基地台距離表 34
5.4 不同速度對於系統Throughput之影響 36
第六章 結論與未來展望 37
參考文獻 39
圖目錄
圖2.1:都卜勒效應對於子載波的影響 3
圖2.2:具有直射波(Line of sight, LOS) 5
圖2.3:不具有直射波(Line of sight, NLOS) 5
圖2.4:Rayleigh Fading之訊號強度示意圖 6
圖2.5:傑克斯模型 7
圖3.1:Alamouti二傳二收系統架構圖 8
圖3.2(a):傳送端系統架構 11
圖3.2(b):接收端系統架構 11
圖3.3:QPSK(2/3)模擬結果 13
圖3.4:QPSK(1/2)模擬結果 14
圖3.5:QPSK(1/3)模擬結果 14
圖3.6:16-QAM(2/3)模擬結果 15
圖3.7:16-QAM (1/2)模擬結果 15
圖3.8:16-QAM (1/3)模擬結果 16
圖3.9:64-QAM (2/3)模擬結果 16
圖3.10:64-QAM (1/2)模擬結果 17
圖3.11:64-QAM (1/3)模擬結果 17
圖4.1:改變碼率的效能比較 21
圖4.2:改變調變的效能比較 22
圖4.3:時速250 km/hr下QPSK(2/3)和16-QAM(1/3)效能比較 23
圖4.4:時速350 km/hr下QPSK(2/3)和16-QAM(1/3)效能比較 24
圖4.5:時速500 km/hr下QPSK(2/3)和16-QAM(1/3)效能比較 24
圖4.6:時速250 km/hr下16-QAM(1/2)和64-QAM(1/3)效能比較 25
圖4.7:時速350 km/hr下16-QAM(1/2)和64-QAM(1/3)效能比較 26
圖4.8:時速500 km/hr下16-QAM(1/2)和64-QAM(1/3)效能比較 26
圖5.1:模擬情境示意圖 29
圖5.2:雜訊比與距離關係 30
圖5.3:路徑損失模型 33
圖5.4:距離與Throughput之變化 34
圖5.5:三種速度下兩種MIMO系統之Throughput比較 36
圖6.1:考慮速度的適應性調變與編碼表 38
圖6.2(a):傳送端系統架構 38
圖6.2(b):接收端系統架構 38
表目錄
表3.1:二傳二收傳送符碼表 9
表3.2:四傳四收實數傳送符碼表 10
表3.3:四傳四收複數傳送符碼表 11
表3.4:系統模擬參數 12
表3.5:時速為250 km/hr的BER極限值 19
表3.6:時速為350 km/hr的BER極限值 20
表3.7:時速為500 km/hr的BER極限值 20
表4.1:調變與碼率的選擇 27
表5.1:基地台距離表 35

參考文獻 參考文獻
[1] 3GPP TS 36.212: “Multiplexing and channel coding”.
[2] M. Cudak, “IEEE 802.16m System Requiremens,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16m-08/008, 2008.
[3] J. Zhuang, L. Jalloul, R. Novk, J. Park “Project 802.16m Evaluation Methodology Document (EMD)” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m-08/004, 2008.
[4] R. B. Marks, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE 802.16e Standard, Feb. 2006.
[5] A.J. Goldsmith, S.-G. Chua, “Adaptive coded modulation for fading channels,” Communications, IEEE Transactions on, vol. 46, Issue 5, May 1998, pp.595-602.
[6] A. Farrokh, V. Krishnamurthy, R. Schober, “Optimal Adaptive Modulation and Coding with Switching Costs,” Communications, IEEE Transactions on, Vol. 57, Issue 3, March 2009, pp. 697-706.
[7] Shang Jing, Gao Yan, Li Zhen, Man Yi, Song Junde, “Performance study of adaptive modulation/coding in MIMO-OFDM system,” Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on, Vol. 3, 4-7 May 2003, pp. 1559-1562.
[8] Soon-Ghee Chua, A. Goldsmith, “Adaptive coded modulation for fading channels,” Communications, 1997. ICC 97 Montreal, 'Towards the Knowledge Millennium'. 1997 IEEE International Conference on, Vol. 3, 8-12 June 1997, pp. 1488-1492.
[9] Xiaoxin Qiu, K. Chawla, “On the performance of adaptive modulation in cellular systems,” Communications, IEEE Transactions on, Vol. 47, Issue 6, June 1999, pp. 884-895.
[10] Z. Lin, E. Erkip, M. Ghosh, “Adaptive modulation for coded cooperative systems,” Signal Processing Advances in Wireless Communications, 2005 IEEE 6th Workshop on, 5-8 June 2005, pp. 615-619.
[11] W. C. Jakes, “Microwave mobile communication,” New York IEEE Press, 1974.
[12] P. S. Rha, “Frequency reuse scheme with reduced co-channel interference for fixed cellular systems,” Electronics Letters, Vol. 34, Issue 3, Feb. 1998
[13] J.H Winters, “On the capacity of radio communications systems with diversity in Rayleigh fading environments,” IEEE J. Select. Areas Comun., vol.5, pp.871-878, June 1987
[14] H. Sampath, S. Talawar, J. Tellado V. Eeaeg, and A. Paulraj, “A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results,” IEEE Communications Magazine, Vol.40, Issue9, pp.143-169, 2002
[15] S. M. Alamouti “A Simple Trans Diveristy Technique For Wireless Communication.” IEEE JSAC, vol.16, no.8, pp.1451-1458, Oct. 1998.
[16] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, vol.45, no.5, July 1999.
[17] IEEE 802.16m Evaluation Methodology Document (EMD), IEEE 02.16m-08/004r5, Jan. 2009

[18] Christian Hoymann, “Analysis and performance evaluation of the OFDM-based metropolitan area network IEEE 802.16,” The International Journal of Computer and Telecommunications Networking, vol.49, pp.341-363, October, 2005.
[19] J. Irvine, J.-P. Couvy, F. Graziosi, J. Laurila, G. Mossakowski, P. Robin, “System architecture for the MOSTRAIN project (mobile services for high speed trains),” IEEE Vehicular Technology Conference, 1997, Volume 3, May 1997.
[20] J. Irvine, D. Robertson, J. Dunlop, “The MOSTRAIN (mobile services for high speed trains) system demonstrator,” IEEE Personal, Indoor and mobile Radio Communications , 1997, Volume 3, May 1997.
[21] F. Abrishamkar, J. Irvine, “Comparison of current solutions for the provision of voice services to passengers on high speed trains,” IEEE Vehicular Technology Conference, 2000, Volume 5, Sept. 2000.
[22] Hwang Hyungu, Park Hyoungjun, “Doppler Frequency Offset Estimation in OFDM Systems,” 4th International Symposium on Wireless Pervasive Computing, 2009. ISWPC 2009, pp.1-4, 2009.
[23] Zhao Xiaochuan, Peng Tao, Yang Ming, Wang Wenbo, “Doppler Spread Estimation by Tracking the Delay-Subspace for OFDM Systems in Doubly Selective Fading Channels” IEEE Signal Processing Letters, Vol.16, Issue.3, pp.212-215, 2009.
[24] A. Al-Dweik, A. Hazmi, S. Younis, B. Sharif, C. Tsimenidis, “Carrier Frequency Offset Estimation for OFDM Systems Over Mobile Radio Channel,” IEEE Transactions on Vehicular Technology, Vol.59, Issue.2, pp.974-979, 2010.
[25] 李文景, 高速行動通訊下利用階層式調變偵測多天線傳接正交分頻多工系統之載波頻率飄移,碩士論文,電機工程學系,台灣大學, 2010
[26] A. Sampath, J.M. Holtzman, “Estimation of maximum Doppler frequency for handoff decisions,” Vehicular Technology Conference, pp.859 -862, 1993.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信