淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-0107200902114100
中文論文名稱 數位全像之光電訊號處理及其應用研究
英文論文名稱 Studies on Electro-Optical Signal Processing of Digital Holography and Their Applications
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 杜翰艷
研究生英文姓名 Han-Yen Tu
學號 893350073
學位類別 博士
語文別 中文
口試日期 2009-06-18
論文頁數 115頁
口試委員 指導教授-江正雄
委員-林恭如
委員-黃俊堯
委員-林立謙
委員-施國琛
委員-楊淳良
委員-江正雄
中文關鍵字 數位全像術  辨識  相位編碼  數位全像加密  光學資訊處理 
英文關鍵字 Digital holography  Object recognition  Phase-encoding  Digital holographic encryption  Optical information processing 
學科別分類
中文摘要 數位全像術係將傳統光學全像之記錄介質以電子式CCD/CMOS影像感測器取代,並以數值計算方式重建出原來物體的完整波前(振幅與相位),這使得物體之三維影像資訊能夠被記錄、處理、顯示與應用。因此,數位全像術不僅傳承了光學技術之資訊平行處理的特點與優勢,更開啟了數位電子與光學技術共通的訊號處理平台。有鑑於此,本論文以數位全像之光電訊號處理及其應用研究為主題,探討數位全像術理論、訊號處理、影像顯示及影像加/解密等相關研究工作,並同時進行理論推導、電腦模擬、實驗設計與演示。首先,本文探討數位全像之影像重建方法及其分析與比較。接著,針對數位全像片進行數位訊號處理:主要包含位元平面影像之重建分析、全像片之數位處理包含量化、濾波與辨識等重建影像之特性分析。最後,本研究結合數位全像資訊之記錄與重建特性,提出新型全相位編碼雙金鑰加密方法,並利用液晶空間光調制器之相位調制特性實現線上可程控相位金鑰設計與操作。本文期能透過深入研究數位全像特性與其訊號處理方法以促成數位全像技術、數位訊號處理技術與光學資訊處理相互結合而建構出新型三維資訊處理系統及其應用範疇。
英文摘要 Digital holography is a counterpart of optical holography except that a CCD/CMOS image sensor instead of the photographic films is used for recording the interference fringes, and thus can be numerical reconstruction of the three-dimensional object. Thus, the information contents, including the amplitude and the phase of holograms can be measured, stored, transmitted, manipulated and applied in digital form. Also, digital holography share the potential advantages of the parallelism and information processing capability of optics and construct a common platform between digital electronics and optics communities in terms of signal processing viewpoint. So, the main intent of our work entitled “Studies on Electro-Optical Signal Processing of Digital Holography and Their Applications” launches into new research, which focus on the theoretical investigation, image reconstruction, image processing, information encryption/decryption related applications. This study is a executed by methodology, computer simulation, experiments, hardware implementation and their applications. In addition to the study of different image reconstruction approaches, holograms can be digitally applied to various image processing such as the 3D image reconstruction of bit-plane, quantization and recognition. Finally, this work describes a full phase encoding technique for digital holographic encryption based on liquid crystal spatial light modulators, which are operated in the phase modulation mode to perform the phase-encoding object and the double random phase key masks for optical Fresnel encryption. The proposed encryption system with electrically addressed spatial light modulators provides the flexibility of the key mask design by on-line processing. This study attempted to incorporate the optical and digital techniques into an electro-optical configuration and construct a digital holographic information system with reducing storage capacity and fast transmission. Due to the superior performance of the digital holography, many potential applications will be created and realized in the near future study.
論文目次 目錄
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
第一章 緒論 1
1.1 全像術之發展 1
1.2 全像術與數位全像術之相關研究與應用 2
1.3 研究動機與挑戰 3
1.4 論文大綱與安排 5
第二章 全像術與數位全像術原理 7
2.1 全像術 7
2.2 相移術 8
2.3 相移式數位全像技術 12
第三章 數位全像之影像重建 20
3.1 簡介 20
3.2 數位全像術之記錄與重建 21
3.3 數位全像片之影像重建與應用 25
3.3.1 數位全像之成像平面 25
3.3.2 全像片量化之影像重建分析 26
3.3.3 重建影像之量化分析 31
3.4 數位全像術中之光斑雜訊研究 33
3.4.1 光斑雜訊 33
3.4.2 光斑雜訊消滅技術 34
3.4.3 光斑雜訊消滅之濾波器設計 36
3.4.4 光斑雜訊之光學資訊處理 39
第四章 數位全像之訊號處理 45
4.1 簡介 45
4.2 不同形式全像片之位元平面重建 46
4.2.1 相位全像片 47
4.2.2 強度全像片 51
4.3 物體/影像辨識 58
4.3.1 聯合轉換相關器 59
4.3.2 影像辨識 62
4.3.3 物體三維辨識 65
第五章 數位全像加解密 69
5.1 簡介 69
5.2 雙隨機亂相編碼技術 71
5.3 相移式數位全像之資訊加密/解密架構 72
5.3.1 Fresnel加密/解密法 73
5.3.2 電腦數值模擬結果 78
5.4 全相位式雙隨機相位編碼數位全像加密/解密架構 79
5.4.1 全相位式雙隨機相位編碼加密/解密流程 80
5.4.2 電腦模擬 90
5.4.3 實驗架構 91
5.4.4 結果與討論 93
第六章 結論與未來展望 101
參考文獻 104
圖目錄
圖2. 1 三步法(a)複數振幅全像片與其(b)重建影像 9
圖2. 2 相移式數位全像之記錄與重建系統架構 10
圖2. 3 四步法(a)複數振幅全像片與其(b)重建影像 11
圖2. 4 (a)相位判斷重建影像與(b)未經相位判斷重建影像 12
圖2. 5 數位全像之記錄與重建架構 13
圖2. 6 同軸式數位全像術之(a)記錄與(b)重建 15
圖2. 7 光學重建之轉換與重建系統架構. 17
圖2. 8 模擬空間光調制器所獲之光學重建影像(a)原始影像(b)Phase-only(c) Amplitude-only(d)複合式調制(e)Phase-mostly(f)Amplitude-mostly. 17
圖2. 9 SLM於不同距離進行光學重建之實驗結果[15] 18
圖2. 10複合式空間光調制成像系統(a)調制結構(b)調制曲線 19
圖3. 1 相移式數位全像術之成像平面 22
圖3. 2 不同重建距離誤差之重建影像(a)5%(b)10%(c)20%(MSE:(a)0.0347 (b)0.0357(c)0.0371) 24
圖3. 3 不同重建波長誤差之重建影像(a)5%(b)10%(c)20%(MSE:(a)0.0347 (b)0.0357(c)0.0371) 24
圖3. 4 重建圖像之NRMS誤差(a)不同重建距離(b)不同重建波長 25
圖3. 5 相移式數位全像系統之影像重建流程圖 27
圖3. 6 數位全像片之量化流程圖 27
圖3. 7 不同形式全像片之數值重建影像(a)複數振幅重建影像(b)純相位重建影像與(c)純振幅重建影像 28
圖3. 8 強度全像片於不同位元深度量化之重建影像(a)~(h)分別為1~8位元深度量化(MSE:(a)4.7×10-3(b)3×10-4(g)2×10-7) 29
圖3. 9 相位全像片於不同位元深度量化之重建影像(a)~(h)分別為1~8位元深度量化(MSE:(a)6.9×10-4(b)1.5×10-4(g)6.8×10-5) 29
圖3. 10 複數振幅資訊不同位元深度之重建影像(a)~(h)分別為1~8位元深度量化平面之重建影像(MSE:(a)6.5×10-4(b)7.5×10-4(g)7.4×10-8) 29
圖3. 11 數位全像片於不同位元深度量化之重建影像品質 30
圖3. 12 重建影像之量化流程 31
圖3. 13 純相位全像片重建影像之量化(a)~(h)分別為1~8位元深度量化之重建影像(MSE:(a)0.1502(c)0.0198(g)0.0108) 32
圖3. 14 複數振幅全像片重建影像之量化(a)~(h)分別為1~8位元深度量化平面之重建影像(MSE:(a)1.5×10-1 (c) 4.8×10-3 (g)7.5×10-6) 32
圖3. 15 純相位與複數振幅全像片重建影像之量化誤差 32
圖3. 16 光斑雜訊影像(a)未濾波之重建影像(b)使用圖像resize與(c)使用中值濾波器之重建影像[82] 35
圖3. 17 中值濾波後之光斑雜訊影像 36
圖3. 18 低通濾波後之光斑雜訊影像 37
圖3. 19 縮小重建影像尺寸之光斑雜訊影像 38
圖3. 20 低通濾波器(3×3)+中值濾波器(7×7)之光斑雜訊影像 38
圖3. 21 低通濾波器(3×3)+中值濾波器(7×7)+拉普拉斯濾波之光斑雜訊影像 39
圖3. 22 雙立方內插+低通濾波器(3×3)+中值濾波器(7×7)之光斑雜訊影像 39
圖3. 23 雙立方內插法+Harr小波之光斑雜訊影像 39
圖3. 24 減去原始全像片之(a)1/2(b)1/4(c)1/8,(d)-(f)分別為圖(a)-(c)之全像片重建影像 40
圖3. 25 擷取原始全像片之(a)1/8(b)1/4(c)1/2資訊(d)-(f)分別為圖(a)-(c)之全像片重建影像 41
圖3. 26 不同重建距離之重建影像(a)185 mm(b)200 mm(c)215 mm 41
圖3. 27 不同重建波長之重建影像(a)472 nm(b)532 nm(c)592 nm 42
圖3. 28光斑雜訊影像(a)原始全像片200×200(b)補零至1000×1000尺寸大小之全像片(c)雙線性內插+低通(3×3)+中值(7×7)濾波器 43
圖3. 29 擷取原始全像片(a)1/8(b)1/2資訊+雙線性內插+低通(3×3)+中值(7×7)之光斑雜訊影像 44
圖4. 1 (a)~(h)各位元平面相位全像片(a)為LSB而(h)為MSB 48
圖4. 2 (a)~(h)分別為圖4. 1(a)~(h)全像片所對應之重建影像 48
圖4. 3 相位全像片之重建影像(a)8-Bit(b)MSB 49
圖4. 4 相位全像片不同位元平面及位元深度重建影像差值判斷流程 50
圖4. 5 相位於各位元平面與全位元全像片重建影像之NRMS 50
圖4. 6 直方圖(a)強度全像片(b)相位分佈 52
圖4. 7 強度全像片於各位元平面之重建影像 52
圖4. 8 強度全像片與其對應直方圖(a)調整參考光前(b)調整參考光後[68] 53
圖4. 9 調整參考光強度之量化重建影像(a)調整前(b)調整後[68] 53
圖4. 10 強度全像片直方圖之移位判斷 54
圖4. 11 (a)移位強度全像片灰階值MSB重建流程(b)移位前與移位後強度全像片直方圖變化. 55
圖4. 12 全像片移位前後之(a)強度全像片與(b)所對應之MSB全像片 56
圖4. 13 強度全像片MSB之重建影像(a)移位前(b)移位後 56
圖4. 14 二值化閥值強度全像片重建影像之NRMS(a)Iron(b)Child(c)Dice 57
圖4. 15 二值化閥值強度全像片之重建影像(a)Iron(b)Child(c)Dice 57
圖4. 16相位式聯合轉換相關器. 60
圖4. 17 Iron重建影像(a)Full-bit(b)MSB of phase(c)二值化臨界閥值(d)移位強度全像片MSB 63
圖4. 18 Child重建影像(a)Full-bit(b)MSB of phase(c)二值化臨界閥值(d)位移強度全像片MSB 63
圖4. 19 Iron辨識結果(a)Full-bit(b)MSB of phase(c)二值化臨界閥值(d)移位強度全像片MSB(PRMSR:(a)347 (b)283 (c)285 (d)233 ) 64
圖4. 20 Child辨識結果(a)Full-bit(b)MSB of phase(c)二值化臨界閥值(d)位移強度全像片MSB(PRMSR:(a)305 (b)231 (c)251 (d)236 ) 64
圖4. 21全像片之各區塊記錄著物體三維資訊 65
圖4. 22不同區塊全像片可重建物體不同視角影像 66
圖4. 23 Iron之各種全像片相位資訊辨識(a)Full-bit(b)MSB of phase(c)臨界閥值技術(d)位移強度全像片MSB(PRMSR:(a) 73647(b) 46254(c) 47184(d) 44347 ) 67
圖4. 24 Child之各種全像片相位資訊辨識(a)Full-bit(b)MSB of phase(c)二值化臨界閥值(d)位移強度全像片MSB(PRMSR:(a) 85130(b) 48461(c) 62079(d) 51780 ) 68
圖5. 1 雙隨機相位遮罩數位全像加/解密系統 74
圖5. 2 雙隨機相位遮罩相移式架構 75
圖5. 3 雙隨機相位編碼加密流程圖 76
圖5. 4 參考光端金鑰製作流程 78
圖5. 5 雙隨機相位編碼解密流程圖 78
圖5. 6 數位全像加/解密系統電腦數值模擬結果 79
圖5. 7 全相位式雙隨機相位編碼相移式加解密 81
圖5. 8 全相位雙金鑰加密架構 82
圖5. 9 全相位式雙隨機相位編碼加解密流程圖(a)加密流程(b)製作參考光端金鑰流程(c)製作物光端金鑰流程(d)解密流程 83
圖5. 10 參考光端金鑰製作 85
圖5. 11 物光端金鑰製作. 86
圖5. 12 全相位式雙隨機相位編碼相移式加解密實驗架構 89
圖5. 13 液晶空間光調制器相位調製特性 (a) LC-SLM1 與 LC-SLM2 (b) LC-SLM3… 89
圖5. 14 全相位式雙隨機相位編碼數位全數加密與解密電腦模擬結果(a)輸入物體(b)加密全像片振幅(c)加密全像片相位(d)參考光端金鑰全像片振幅(e)參考光端金鑰全像片相位(f)物光端金鑰全像片振幅(g)物光端金鑰全像片相位(h)經正確金鑰解密後影像(i)不使用金鑰之解密影像(j)輸入單一金鑰之解密影像 91
圖5. 15全相位式雙隨機相位編碼相移式加解密實驗 92
圖5. 16 全相位式雙隨機相位遮罩加密(a)欲加密影像(b)加密振幅全像片(c)加密相位全像片(d)參考光端振幅金鑰(e)參考光端相位金鑰(f)物光端振幅金鑰(g)物光端相位金鑰(h)參考光端與物光端不使用金鑰經Fresnel transform演算法所得影像 94
圖5. 17使用正確金鑰但接收不同密文振幅正確率之解密實驗結果,振幅錯誤率分別為(a)10%(b)25%(c)50%(d)70%(e)90%(f)100%之解密結果 95
圖5. 18使用正確金鑰但接收不同密文相位正確率之解密實驗結果,相位錯誤率分別為(a)10%(b)25%(c)50%(d)70%(e)90%(f)100%之解密結果 96
圖5. 19 全相位式雙隨機相位數位全像(a)使用正確雙金鑰解密實驗結果(b)圖(a)之濾波結果 97
圖5. 20 不同金鑰正確率之解密實驗結果(a)100%雙金鑰解密(b)物光金鑰100%,參考光金鑰50%(c)物光金鑰100%,參考光金鑰70%(d)物光金鑰100%,參考光金鑰90%(e)物光金鑰50%,參考光金鑰100%(f)物光金鑰70%,參考光金鑰100%(g)物光金鑰90%,參考光金鑰100% 97
圖5. 21不同金鑰正確率之解密模擬結果 (a) 100%雙金鑰解密 (b)物光金鑰100%,參考光金鑰50%(c)物光金鑰100%,參考光金鑰70%(d)物光金鑰100%,參考光金鑰90%(e)物光金鑰50%,參考光金鑰100%(f)物光金鑰70%,參考光金鑰100%(g)物光金鑰90%,參考光金鑰100% 98
圖5. 22物光端與參考光端相位遮罩像素遺失比例對解密影響 99
圖5. 23 參考光金鑰位移對解密影響 100



參考文獻 [1] D. Gabor, “Microscopy by Reconstructed Wavefronts,” Proc. R. Soc., A197, 1949, pp. 457-487.
[2] D. Gabor, “Microscopy by Reconstructed Wavefronts,” Proc. Phys. Soc., B64, 1951, pp. 449-469.
[3] D. Gabor, “A new microscopic principle,” Nature, 161, 1948, pp. 777-778.
[4] G. L. Rogers, “Gabor Diffraction Microscopy: The Hologram as a Generalized Zone Plate,” Nature, 166, 1950.
[5] El-Sum, H. M. A., Reconstructed Wavefront Microscopy, Doctoral dissertation, Stanford University, 1952.
[6] A. Lohmann, “Optical Single-Sideband Transmission Applied to the Gabor Microscope,” Opt. Acta, 397, 1956.
[7] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Comunication Theory,” J. Opt. Soc. Am., 52, 1962, pp. 1123-1130.
[8] U. Schnars and W. Jueptner, Digital holography, Springer Berlin Heifelberg, New York, 2005.
[9] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett., 22(16), 1997, pp. 1268–1270.
[10] U. Schnars and Werner P. O. Juptner, “Digital Recording and Numerical Reconstruction,” Meas. Sci. Technol., 13, 2002, pp. R85-R101.
[11] U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt., 33, 1994, pp. 179-181.
[12] M. R. Chatterjee and S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications, 2006, pp. 379-425.
[13] T. C. Poon, Digital Holography and Three-dimensional Display, Springer, New York, 2006.
[14] Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce and B. Javidi, “Three-Dimensional Imaging and Processing Using Computational Holographic Imaging,” Proc. of the IEEE, 94(3), 2006, pp. 636-653.
[15] O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt., 41(29), 2002, pp. 6187-6192.
[16] B. Javidi and F. Okano, Three-dimensional television, video, and display technologies, Springer-Verlag, Berlin, 2002.
[17] P. Hariharan, Optical Holography, Cambridge University Press, Cambridge, 1996.
[18] T. Kreis, P. Aswendt and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng., 40(6), 2001, pp.926-933.
[19] L. G. Neto, D. Roberge and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt., 35(23), 1996, pp.4567-4576.
[20] L. G. Neto, D. Roberge and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt., 34(11), 1995, pp. 1944-1950.
[21] C. J. Cheng, Y. C. Lin, M. L. Hsieh and H. Y. Tu, “Complex Modulation Characterization of Liquid Crystal Spatial Light Modulators by Digital Holographic Microscopy,” Jpn. J. Appl. Phys., 47(5), 2008, pp.3527-3529.
[22] P. Yeh and C. Gu, Optics of Liquid crystal Display, John Wiley & Sons, New York, 1999.
[23] V. Kebbel, H. J. Hartmann and W. P. O. Jüptner, “Characterization of micro-optics using digital holography,” Proc. SPIE, 4101, 2000, pp. 477-487.
[24] V. Kebbel, J. Müller and W. P. O. Jüptner, “Characterization of aspherical micro-optics using digital holography: improvement of accuracy,” Proc. SPIE, 4778, 2002, pp. 188-197.
[25] O. Coquoz, R. Conde, F. Taleblou and C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt., 34(31), 1995, pp. 7186-7193.
[26] P. Ferraro, D. Alferi, S. D. Nicola, L. D. Petrocellis, A. Finizio and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett., 31(10), 2006, pp. 1405-1407.
[27] M. K. Kim, L.Yu and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A: Pure Appl. Opt., 8, 2006, pp. S518-S523.
[28] J. Chen, T. Hirayama, G. Lai, T. Tanji, K. Ishizuka and A. Tonomura, “Real-time electron-holographic interference microscopy with a liquid-crystal spatial light modulator,” Opt. Lett., 18(22), 1993, pp. 1887-1889.
[29] B. Nilsson and T. E. Carlsson, “Direct three dimensional shape measurement by digital light in flight holography,” Appl. Opt., 37(34), 1998, pp. 7954-7959.
[30] P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett., 20(7), 1995, pp. 767-769.
[31] B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett., 25(1), 2000, pp. 28-30.
[32] E. Tajahuerce, O. Matoba, S. C. Verral and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt., 39(14), 2000, pp. 2313-2320.
[33] E. Tajahuerce and B. Javidi, “Encryption three-dimensional information with digital holography,” Appl. Opt., 39(35), 2000, pp. 6595-6601.
[34] N. Towghi, B. Javidi and Z. Luo, “Fully phase encrypted image processor,’’ J. Opt. Soc. Am. A, 16(8), 1999, pp. 1915–1927.
[35] N. K. Nishchal, J. Joseph and K. Singh, “Securing information using fractional Fourier transform in digital holography,’’ Opt. Commun., 235, 2004, pp. 253-259.
[36] B. B. Chhetri, S. Serikawa, S. Yang and T. Shimomura, “Binary phase difference diffuser: Design and application in digital holography,” Opt. Eng., 41(2), 2002, pp. 319-327.
[37] S. Kishk and B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt., 41(26), 2002, pp. 5462-5470.
[38] N. K. Nishchal and J. J. Kehar and Singh, “Fully phase encryption using digital holography,” Opt. Eng., 43(12), 2004, pp. 2959-2966.
[39] S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun., 178, 2000. pp. 283-289.
[40] L. Z. Cai, M. Z. He, Q. Liu and X. L. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt., 43(15), 2004, pp. 3078-3084.
[41] B. Javidi, N. Towghi, N. Maghzi and S. C. Verrall, ‘‘Error-reduction techniques and error analysis for fully phase-and amplitude-based encryption,’’ Appl. Opt., 39(23), 2000, pp. 4117-4130.
[42] L. C. Lin and C. J. Cheng,” Optimal key mask design for optical encryption based on joint transform correlator architecture,” Opt. Commun., 258, 2006, pp. 144-154.
[43] H. Y. Tu, J. S. Chiang, J. W. Chou and C. J. Cheng, “Full Phase Encoding for Digital Holographic Encryption Using Liquid Crystal Spatial Light Modulators,” Jpn. J. Appl. Phys., 47(12), 2008, pp. 8838.
[44] G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett., 29(14), 2004, pp. 1584-1586.
[45] B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett., 28(4), 2003, pp. 269-271.
[46] X. Peng, L. F. Yu and L. L. Cai, “Double-lock for image encryption with virtual optical wavelength,” Opt. Exp., 10(1), 2002, pp. 41-45.
[47] X. G. Wang, D. M. Zhao, F. Jing and X. F. Wei, “Information synthesis (complex amplitude addition and subtraction) and encryption with digital holography and virtual optics,” Opt. Exp., 14(4), 2006, pp. 1476-1486.
[48] H. Kim, D. H. Kim and Y. H. Lee, “Encryption of digital hologram of 3-D object by virtual optics,” Opt. Exp., 12(20), 2004, pp. 4912-4921.
[49] Y. Zhang, C. H. Zheng and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun., 202, 2002, pp. 277-285.
[50] G. H. Situ and J. J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett., 30(11), 2005, pp. 1306-1308.
[51] L. F. Chen and D. M. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Exp., 14(19), 2006, pp. 8522-8560.
[52] B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett., 25(9), 2000, pp. 610-612.
[53] E. Tajahuerce, O. Matoba and B Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt., 40(23), 2001, pp. 3877-3886.
[54] Y. Frauel, E. Tajahuerce, M. A. Castro and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt., 40(23), 2001, pp. 3887–3893.
[55] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett., 23(15), 1998, pp. 1221-1223.
[56] I. Yamaguchi, J. Kato, S. Ohta and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt., 40(34), 2001, pp. 6177-6186.
[57] E. Cuche, F. Bevilacqua and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett., 24(5), 1999, pp. 291-293.
[58] E. Cuche, P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt., 38(34), 1999, pp. 6994-7001.
[59] C. J. Mann and M. K. Kim, “Quantitative phase-contrast microscopy by angular spectrum digital holography,” Proc. SPIE, 6090, 2006, pp. 60900B-1-60900B-8.
[60] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett., 30(5), 2005, pp. 468-470.
[61] P. Massatsch, F. Charrière, E. Cuche, P. Marquet and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt., 44(10), 2005, pp. 1806-1812.
[62] F. Charrière, N. Pavillon, T. Colomb and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Exp., 14(16), 2006, pp. 7005-7013.
[63] F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett., 31(2), 2006, pp. 178-180.
[64] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt., 41(22), 2002, pp. 4489-4496.
[65] L. M. León, G. Pedrini and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt., 44(19), 2005, pp. 3977-3984.
[66] G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett., 25(4), 2000, pp 212-214.
[67] M. L. Hsieh, M. L. Chen and C. J. Cheng, “Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique,” Opt. Eng., 46(7), 2007, pp. 070501-1-070501-3.
[68] G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt., 44(7), 2005, pp. 1216–1225.
[69] O. A. Skydan, F. Lilley, M. J. Lalor and D. R. Burton, “Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis,” Appl. Opt., 42(26), 2003, pp. 5302–5307.
[70] M. Liebling, T. Blu, E. Cuche, P. Marquet, C. Depeursinge and M. Unser, “Local amplitude and phase retrieval method for digital holography applied to microscopy,” Bio. Opt., 5143, 2003, pp. 210-214.
[71] D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt., 45(3), 2006, pp. 451-459.
[72] J. A. Leendertz, “Interferometic displacement measurement on acattering aurfaces utilizing speckle effect,” Journal of physics:Scientific Instruments, 3, 1970, pp.214-218.
[73] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1996 2nd ed.
[74] T. Kreis and W. Ju¨ptner, “Suppression of the dc term in digital holography,” Opt. Eng., 36(8), 1997, pp. 2357-2360.
[75] E. Cuche, P. Marquet and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt., 39(23), 2000, pp. 4070-4075.
[76] H.-M. Lin, and A. N. Willson, “Median Filters with Adaptive Length,” IEEE Trans. on Circuits and Systems, 35(6), 1988, pp. 675-690.
[77] S. J. Ko and Y. H. Lee, “Center Weighted Median Filters and Their Applications to Image Enhancement,” IEEE Trans. on Circuits and Systems, 38(9), 1991, pp. 984-993.
[78] L. Yin, R. Yang, M. Gabbouj and Y. Neuvo, “Weighted Median Filters: a Tutorial,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Proc., 43(3), 1996, pp. 157-192.
[79] B. Zeng, “Convergence Properties of Median and Weighted Median Filters,” IEEE Trans. on Signal Proc., 42(12), 1994, pp. 3515-3518.
[80] F. Qian, X. Wang and Y. Bu, “Adaptive Filter for Unwrapping Noisy Phase Image in Phase-Stepping Interferometry,” Optics and Laser Technology, 33, 2001, pp. 479-486.
[81] A. Davila, D. Kerr and G. H. Kaufmann, “Fast Electro-Optical System for Pulsed ESPI Carrier Fringe Generation,” Opt. Commun., 123, 1996, pp. 457-464.
[82] J. G. Sucerquia, J. A. H. Ramírez and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik optics, 116, 2005, pp. 44-48.
[83] A. Nelleri, U. Gopinathan, J. Joseph and K. Singh, “Three-dimensional object recognition from digital Fresnel hologram by wavelet matched filtering,” Opt. Commun., 259, 2006, pp. 499-596.
[84] T. Nomura, M. Okamura, E. Nitanai and T. Numata, “Speckles removal in digital holography using multiple wavelengths/distances from an object,” IEEE, 2006, pp 74-75.
[85] I. Yamaguchi, K. Yamamoto, G. A. Mills and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt., 45(5), 2006, pp. 975-983.
[86] C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A, 7(4), 1990, pp. 537-541.
[87] G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt., 44(7), 2005, pp. 1216-1225.
[88] O. A. Skydan, F. Lilley, M. J. Lalor and D. R. Burton, “Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis,” Appl. Opt., 42(26), 2003, pp. 5302-5307.
[89] L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms, Kluwer Academic, Dordrecht, The Netherlands, 2004, pp. 40-44 and pp. 541-573.
[90] A. E. Shortt, T. J. Naughton and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Exp., 14(12), 2006, pp. 5129-5134.
[91] T. J. Naughton, Y. Frauel, B. Javidi and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt., 41(20), 2002, pp. 4124-4132.
[92] T. J. Naughton, J. B. McDonald and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three dimensional images,” Appl. Opt., 42(23), 2003, pp. 4758-4764.
[93] G. Lu, Z. Zhang and F. T. S. Yu, “Phase-encoded input joint transform correlator with improved pattern discriminability,” Opt. Lett., 20(11), 1995, pp. 1307-1309.
[94] T. Nomura, M. Okamura, E. Nitanai and T. Numata1, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt., 47(19), 2008, pp. D38-D43.
[95] J. Maycock B. M. Hennelly and J. B. McDonald, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A, 24(6), 2007, pp. 1617-1622.
[96] U. Gopinathan, D. S. Monaghan, T. J. Naughton and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Exp., 14(8), 2006, pp. 3181-3186.
[97] X. Peng, P. Zhang, H. Wei and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31(8), 2006, pp. 1044-1046.
[98] N. Delen and B. Hooker, “Free-space beam propagation between arbitrarilyoriented planes based on full diffraction theory: A fast Fourier transform approach,” J. Opt. Soc. Am. A, 15(4), 1998, pp. 857–867.
[99] D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun., 164, 1999, pp. 233-245.
[100] L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett., 18(11), 1993, pp. 846–848.
[101] L. Onural and M. Kocatepe, “Family of scaling chirp functions, diffraction, and holography,” IEEE Trans. On Signal Proc., 43(7), 1995, pp. 1568–1578.
[102] Y. Sheng, S. Deschenes and H. J. Caulfield, “Monochromatic electromagnetic wavelets and the Huygens principle,” Appl. Opt., 37(5), 1998, pp. 828–833.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信