淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0107200701035500
中文論文名稱 應用互補碼於正交分頻多工系統之系 統效能模擬
英文論文名稱 System Performance Evaluation by Applying Complementary Code Keying Codes in OFDM System
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 吳迺逵
研究生英文姓名 Nai-Kuei Wu
學號 694351007
學位類別 碩士
語文別 中文
口試日期 2007-06-11
論文頁數 68頁
口試委員 指導教授-詹益光
委員-李揚漢
委員-陳德勝
中文關鍵字 正交分頻多工  互補碼  可加性高斯白雜訊  雷利衰減 
英文關鍵字 Orthogonal Frequency Division Multiplexing(OFDM)  Complementary Coding Keying(CCK)  Additive White Gaussian Noise (AWGN)  Rayleigh Fading 
學科別分類 學科別應用科學電機及電子
中文摘要 在本論文中, 主要是利用Matlab 軟體透過正交分頻多工
(Orthogonal Frequency Division Multiplexing, OFDM)系統通過兩種不
同的調變技術去評估系統效能,一種是QPSK,另一種是使用互補碼
(Complementary Coding Keying, CCK)去實現。利用不同的通道特性例
如只加入可加性高斯白雜訊(Additive White Gaussian Noise, AWGN)
通道,雷利衰減通道(Rayleigh Fading Channel)和通道中結合雜訊和衰
減的影響都被考慮。假設考慮OFDM信號一個符號分別被兩個位元、
四個位元、八個位元的雷利衰減影響系統效能,衰減特性可詳細分為
緩慢衰減和快速衰減。
英文摘要 In this thesis, it is mainly by utilizing Matlab software to evaluate the system
performance of the Orthogonal Frequency Division Multiplexing (OFDM) system
through two different modulation techniques, one is using the Quadrature Phase Shift
Keying (QPSK) and the other is implemented with the Complementary Coding Keying
(CCK). Different channel characteristics such as the channel with only Additive White
Gaussian Noise (AWGN), channel with Rayleigh fading, and the channel with the
combination of noise and fading effects are considered. It considers separately one bit,
two bits, four bits or eight bits of each OFDM symbol being affected by the Rayleigh
fading to elaborate the slow or fast fading characteristics on the system performances.
論文目次 目錄
第一章 緒論 ……………………………….….……..1
1.1 研究動機與目的 ……………………………..……….1
1.2 章節介紹 ……...………………..………..……………3
第二章 OFDM 系統與功率峰均值比的問題 ...........4
2.1 OFDM系統介紹 ………………………………….…...4
2.2 OFDM功率峰均值比問題的產生 ……………………8
2.3 功率峰均值比(Peak to Average Power Ratio, PAPR)介
紹 ……………………………………………………...9
2.3.1 功率峰均值比對OFDM 系統的影響 …………9
2.3.2 功率峰均值比的定義 ………………………...10
2.4 降低功率峰均值比的方法 …………………………12
第三章 互補碼 ……………………………………..16
3.1 互補碼簡介 ..……….…....…………….…………….16
3.1.1 互補碼調變 ..………………………………….17
3.2 互補碼的傳送方式 ..…..…………...…….………….18
3.3 互補碼的接收與解調變 ..…..……….….……...........21
3.4 Fast Walsh 解調變 .…………...………......……..……24
第四章 通道模型介紹 ……………………………..27
4.1 可加性高斯白雜訊(Additive White Gaussian Noise,
AWGN)通道模型 ...........………….………………..27
4.2 衰減通道的類型……………..…....…………….…..29
4.3 雷利衰減通道 ………………..…....…………….…..37
第五章 模擬結果與分析 ………………..…………40
5.1 QPSK 和CCK 在Rayleigh 和AWGN Channel 下系統
的傳輸位元錯誤率 ....……….…....……………...…41
5.2 CCK 在雷利通道中,在不同衰減速率通道特性下系統
的傳輸位元錯誤率 ......................................................58
第六章 結論 ……………………………..…………64
參考文獻 ……………………………………………..66
附錄(Appendix) 程式碼 69
圖目錄
圖2-1 FDM 與OFDM 表示圖 ……………………………………...6
圖2-2 整數週期弦波 ..……………………………….…………........7
圖2-3 QPSK調變信號加入noise 干擾後之星狀圖 ...….………….10
圖3-1 11Mbps CCK 互補碼鍵鏈調變架構 ..…….…….………......20
圖3-2 相位解調示意圖 ..…………………………..………..……...24
圖3-3 2bits 的Walsh Code 編碼 ..………………………………......26
圖3-4 4bits 的Walsh Code 編碼 ..………………………………......26
圖4-1 平均值為零、變異係數為一之高斯機率密度函數 ....……...28
圖4-2 加入可加性高斯白雜訊之傳收架構 ..………………….......29
圖4-3 平坦衰減通道的特性圖 ..…………………………………...34
圖4-4 頻率選擇性衰減通道的特性圖 ..…………………………...35
圖4-5 (a)以信號週期大小來說明衰減種類 (b)以信號頻寬大小來說
明衰減種類 ..………………………………………………...36
圖4-6 QPSK 通訊系統加入雷利(Rayleigh)模型通道示意圖 ….....39
圖4-7 雷利(Rayleigh)模型組成示意圖 ...………………………….39
圖5-1 OFDM 之信號傳送分析模擬流程圖 (a)QPSK 傳收架構
(b)CCK 傳輸架構 (c)虛擬雷利衰減通道置於CCK 調變前之
架構 ………………………………………………………….41
圖5-2 在非OFDM 系統中QPSK 和CCK 只加入AWGN 的模擬流
程圖 .…………….…………………………………………...51
圖5-3 在非OFDM 系統中QPSK 和CCK 只加入AWGN 的位元錯
誤率 ..……………………………………………...................52
圖5-4 在OFDM 系統中QPSK 和CCK 只加入AWGN 的模擬流程
圖 ……………………………………………………………………….53
圖5-5 在OFDM 系統中QPSK 和CCK 只加入AWGN 的位元錯誤
率 …………………………….................................................53
圖5-6 在OFDM 系統中QPSK 和CCK 通過雷利通道的模擬流程
圖 .............................................................................................54
圖5-7 在OFDM 系統中QPSK 和CCK 通過雷利通道的位元錯誤
率 .............................................................................................54
圖5-8 在非OFDM 系統中QPSK 通過Rayleigh Channel 和CCK 先
通過Rayleigh Channel 再調變的模擬流程圖 .......................55
圖5-9 在非OFDM 系統中QPSK 通過雷利通道和CCK 先通過雷利
通道再調變及QPSK 和CCK 只加入AWGN Channel 的位元
錯誤率 .....................................................................................56
圖5-10 在OFDM 系統中QPSK 通過雷利通道和CCK 先通過雷利通

道再調變的模擬流程圖 .........................................................57
圖5-11 在OFDM 系統中QPSK 通過雷利通道和CCK 通過雷利通道
再調變及QPSK 和CCK 只加入AWGN Channel 的位元錯誤
率 .............................................................................................58
圖5-12 在OFDM 系統中使用三種不同衰減速率的方式先通過雷利
通道再CCK 調變(三種不同衰減變化)及先CCK 調變再通過
雷利通道的模擬流程圖 .........................................................62
圖5-13 在OFDM 系統中使用三種不同衰減速率的方式先通過雷利
通道再CCK 調變及先CCK 調變再通過雷利通道的位元錯誤
率(四種情形) ...........................................................................63
表目錄
表3-1 CCK 產生公式中每個相位出現的位置 …………………...18
表3-2 DQSPK 相位對應表 …..……………………………………19
表3-3 5.5Mbps CCK 編碼表 ……………………………………..21
參考文獻 [1] Richard van Nee, Ramjee Prasad, OFDM Wireless Multimedia
Communications, Artech House, Inc., 2000.
[2] IEEE Std 802.11b-1999 Supplement To IEEE Standard For
Information Technology – Telecommunications And Information
exchange Between Systems-Local And Metropolitan Area
Networks-specific Requirements - part 11:Wireless LAN Medium
Access Control (MAC) And Physical Layer (PHY)
Specifications:Higher-speed Physical Layer Extension In the
2.4GHz band.
[3] A. Pelend and A. Ruiz, “Frequency Domain Data Transmission
Using Reduced Computational Complexity Algorithms,” IEEE Int.
Conf. Acoust. Speech, Signal Processing, vol. 5, Apr. 1980, pp.
964-967.
[4] T.A. Wilkinson, A.E. Jones, “Minimisation of the peak to mean
envelope power ratio of multicarrier transmission schemes by block
coding,” in Proc. IEEE Vehicular Technology Conf. (VTC), vol. 2, pp.
825-829, July 1995.
[5] R. D. J. Van Nee, “OFDM codes for peak to average power
reduction and error correction,” in Proc. IEEE Global
Telecommunications Conference, vol. 1, pp. 740-744, Nov. 1996.
[6] M. Friese, “OFDM signal with low crest-factor,” in Proc. IEEE
Global Telecommunications Conference, vol. 1 , pp. 290-294 , Nov.
1997.
[7] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak
to average power ratio of multicarrier modulation by selected
mapping,” IEE Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct.
1996.
[8] S. H. Muller and J. B. Huber, “ODFM with reduced peak to average
power ratio by optimum combination of partial transmit sequences,”
IEE Electron. Lett., vol. 33, no. 5, pp.368-369, Feb. 1997.
[9] 謝侑伸, “線性相位變化降低正交分頻多工訊號功率峰均比,”
Master thesis, Dept. of Communications Engineering, Yuan Ze
University, July 2005.
[10] A.D.S. Jayalath and C.R.N. Athaudage, “On the PAR reduction of
OFDM signals using multiple signal representation,” IEEE
Communications Lett., vol. 8, pp. 425-427, July 2004.
[11] L. J. Cimini, Jr., N. R. Sollenberger, “Peak-to-average power ratio
reduction of an OFDM signal using partial transmit sequences,”
Communications, 1999. ICC '99. 1999 IEEE International
Conference on Volume 1, 6-10 June 1999 Page(s):511 - 515 vol.1.
[12] L. J. Cimini, Jr., N. R. Sollenberger, “Peak-to-average power ratio
reduction of an OFDM signal using partial transmit sequences with
embedded side information,” Global Telecommunications
Conference, 2000. GLOBECOM '00. IEEE Volume 2, 27 Nov.-1
Dec. 2000 Page(s):746 - 750 vol.2.
[13] A.D.S. Jayalath and C.R.N. Athaudage, “On the PAR reduction of
OFDM signals using multiple signal representation,” IEEE
Communications Lett., vol. 8, pp. 425-427, July 2004.
[14] X. Li and C. L. J. Jr., “Effects of clipping and filtering on the
performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133,
May 1998.
[15] J. Armstrong, “Peak to average power reduction for OFDM by
repeated clipping and frequency domain filtering,” IEE Electron.
Lett., vol. 38, pp. 246-247, Feb. 2002.
[16] H. Ochiai and H. Imai, “Performance analysis of deliberately
clipped OFDM signals,” IEEE Trans. Commun., vol. 50, pp. 89-101,
Jan. 2002.
[17] H. Chen and A. Haimovich, “An iterative method to restore the
performance of clipped and filtered OFDM signals,” in Proc. IEEE
Int. Conf. Commun.(ICC), vol. 5, pp. 3438-3442, May 2003.
[18] H. J. Kim, S. C. Cho, H. S. Oh and J. M. Ahn, “Adaptive clipping
technique for reducing PAPR on OFDM systems,” in Proc. IEEE
Vehicular Technology Conf.(VTC), vol. 3, pp. 1478-1481, Oct. 2003.
[19] D. Wulich, N. Dinur and A. Glinowiecki, “Level clipped high order
OFDM,” IEEE Trans. Commun., vol. 48, pp. 928-930, Juan 2000.
[20] 王德仁, “藉由部分傳輸序列法以抑制正交分頻多工訊號中能量
峰值對平均值之比,” Master thesis, Dept. of Communications
Engineering, National Tatung University, June 2003.
[21] “IEEE Std802.11g-2003,” Institute of Electrical and Electronics
Engineers, Inc., 12 June 2003 Pages: i-67.
[22] 朱朝成, “無線區域網路之CCK 調變/解調器與等化器設計與實
現,” Master thesis, Dept. of Electrical Engineering, Southem Taiwan
University of Technology, Aug 2004.
[23] Intersil, “Complementary Code Keying Made Simple”
www.intersil.com/data/an/an9850.pdf.
[24] Golay. M, “Complementary series,” Information Theory IEEE
Transactions on, Vol. 7, Issue: 2, pp. 82-87 Apr 1961.
[25] Carl Andren and Mark Webster, “CCK Modulation Delivers
11Mbps for High Rate IEEE 802.11 Extension,” Proceedings of
Wireless Symposium/Portable by Design Conference, spring 1999
Pages: i-77.
[26] 黃志豪, “A flexible design of a decision feedback equalizer and a
novel CCK technique for wireless LAN systems,” Master thesis,
Dept. of Electrical Engineering, National Chung Hsing University,
June 2002.
[27] 楊石陽, “在Rayleigh 衰減通道中以EM 演算法為基礎之同步
CDMA 通訊系統多使用者接收器,” Master thesis, Dept. of
Electrical Engineering, Chang Gung University of Technology, Nov
2001.
[28] 賴瑞琴, “多載波分碼多重接取系統在瑞雷衰減通道下的盲目適
應性偵測改進,” Master thesis, Dept. of Electrical Engineering,
National Sun Yat-Sen University, June 2000.
[29] Theodore S. Rappaport, “Wireless Communications Principles and
Practice” 2rd 2002.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信