淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0107200622480200
中文論文名稱 糾纏態與量子計算簡介
英文論文名稱 Introduction to Entanglement and Quantum Computing
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 94
學期 2
出版年 95
研究生中文姓名 黃敬皓
研究生英文姓名 Ching-Hao Huang
學號 692180010
學位類別 碩士
語文別 中文
口試日期 2006-06-09
論文頁數 77頁
口試委員 指導教授-何俊麟
委員-唐建堯
委員-張志義
中文關鍵字 糾纏態  糾纏態的測量  量子計算  量子密碼  量子遠程傳送 
英文關鍵字 Entanglement  Entanglement Measures  Quantum Computing  Quantum Cryptography  Quantum Teleportation 
學科別分類 學科別自然科學物理
中文摘要 本論文中,我們將介紹糾纏態的發展歷史,以及如何利用糾纏態來完成一些有趣的應用。糾纏態最早是出現在EPR的假想實驗中,是EPR為了質疑量子力學的完備性而提出的。之後,Bohm重新詮釋EPR的假想實驗,以隱變量及局域性的觀點與量子力學的機率統計詮釋作區分。為了分辨何種觀點較正確,Bell針對糾纏態給出一不等式,顯示出兩種詮釋的衝突並提供實驗方面驗證的依據。由於原本的Bell不等式在實驗上難以實現,CHSH等人便改寫Bell不等式並提出改良實驗的方案。最後,由Aspect團隊根據CHSH的方案完成決定性的實驗,並證實微觀世界確實存有糾纏態。既然糾纏態確實存在,下一步便是找出測量糾纏程度的方法。這裡我們介紹一種方法,是利用熵的概念來量化粒子糾纏的程度。至於糾纏態的應用,大致可分為量子計算、量子密碼及量子遠程傳送三種。量子計算可以解決大數的因數分解難題,也可讓我們用較少的步驟完成搜索資料的工作,大幅減少古典計算所需的時間。量子密碼可讓我們檢測出竊聽者是否存在,以確保傳訊時的安全性。量子遠程傳送讓我們可以傳送粒子給接收者,但不需直接傳送該粒子。
英文摘要 In this thesis, we introduce the history of entanglement development, and some interesting applications of it. Entanglement appeared for the first time in the EPR’s Gedankenexperiment, which argued that quantum mechanics was not a complete theory. Afterwards, Bohm reinterpreted EPR’s Gedankenexperiment with hidden-variable and locality in order to distinguish from the probability interpretation. For finding out which viewpoint was more correct, Bell inferred an inequality of entanglement to show the conflicts of these interpretations and provide a basis for experiments. Because it was difficult to test Bell’s inequality in experiment, CHSH rewrote the Bell’s inequality and proposed a better experimental scheme. Aspect’s team completed the experiment, which was based by CHSH’s scheme, and proved the entanglement existed. Since entanglement existed truly, the next step to find out the methods of measuring the degree of entanglement. We herein introduce a method which quantifies the degree of entanglement with the idea of entropy. There are three kinds of entanglement application, which are the quantum computing, the quantum cryptography and the quantum teleportation. The quantum computing can solve the large number factoring problem and it takes less steps completing the searching, therefore significantly decreasing the time that classical computing needs. The quantum cryptography let us find out whether the eavesdropper exists or not, so we can secure the secrecy of communication. The quantum teleportation allows us to transmit particles to the receiver, instead of transmitting the particles directly.
論文目次 致謝 .........................................i
中文摘要 .....................................ii
英文摘要 .....................................iii
目錄 .........................................iv
第1章 序論 ...................................1
第2章 糾纏態之簡介 ...........................8
2-1 糾纏態的提出 .............................9
2-2 Schrödinger與Bohm的詮釋 ..................15
2-3 Bell不等式和CHSH不等式 ...................20
2-4 CHSH方案和Aspect的實驗證明 ...............26
2-5 糾纏態的量測 .............................30
附錄A 密度矩陣 ...............................34
第3章 量子計算 ...............................36
3-1 大數的因數分解-Shor的演算法 .............37
3-2 快速的搜索系統-Grover的演算法 ...........47
附錄B 公開碼系統-RSA系統 ....................52
第4章 糾纏態於其他方面的應用 .................55
4-0 量子不可克隆原理 .........................56
4-1 量子密碼 .................................57
4-2 量子遠程傳送 .............................65
第5章 結論 ...................................69
參考文獻 .....................................74
參考文獻 [1] M. Born, “Quantenmechanik der Stoßvorgänge”, Zeit. Phys. 38, 803(1926).
[2] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev. 47, 777(1935).
[3] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Die Naturwissenschaften, 23, 807-812; 823-828; 844-849(1935). English translation by J. D. Trimmer, Proc. Am. Philos. Soc. 124, 323(1980).
[4] E. Schrödinger, “Discussion of Probability Relations between Separated Systems”, Proceedings of the Cambridge Philosophical Society 31, 555(1935).
[5] D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1951), p. 611-615.
[6] J. S. Bell, “On the Einstein Podolsky Rosen Paradox”, Physics, 1, 195 (1964).
[7] C. A. Kocher and E. D. Commins, “Polarization Correlation of Photons Emitted in an Atomic Cascade”, Phys. Rev. Lett. 18, 575 (1967).
[8] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories”, Phys. Rev. Lett. 23, 880(1969).
[9] A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell's Theorem”, Phys. Rev. Lett. 47, 460(1981).
[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000), p. 500-527.
[11] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, p. 124-134(1994).
[12] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method of Obtaining Digital Signatures and Public-Key Cryptosystems”, Comm. ACM, 21, 120(1978).
[13] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, in Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, 1996, Philadelphia, Pennsylvania (ACM Press, New York, 1996), p. 212-218.
[14] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing”, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175-179(1984).
[15] A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem”, Phys. Rev. Lett. 67, 661(1991).
[16] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels”, Phys. Rev. Lett. 70, 1895(1993).
[17] N. Bohr, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev. 48, 696(1935).
[18] J. S. Bell, “Introduction to the Hidden-Variable Question”, Foundations of Quantum Mechanics, Proceedings of the International School of Physics “Enrico Fermi”, course IL, New York, Academic, p. 171-181(1971).
[19] M. A. Horne, thesis, Boston University, (1969) (unpublished).
[20] A. Aspect, P. Grangier, and G. Roger, “Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities”, Phys. Rev. Lett. 49, 91(1982).
[21] A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers”, Phys. Rev. Lett. 49, 1804(1982).
[22] M. B. Plenio and S. Virmani, “An Introduction to Entanglement Measures”, arXiv:quant-ph/0504163(2006).
[23] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”, arXiv:quant-ph/9508027(1995).
[24] A. Ekert and R. Jozsa, “Quantum Computation and Shor’s Factoring Algorithm”, Rev. Mod. Phys. 68, 733(1996).
[25] L. K. Hua, Introduction to Number Theory (Springer-Verlag, Berlin Heidelberg, New York, 1982), p. 22-34.
[26] R. V. Meter, K. M. Itoh, and T. D. Ladd, “Architecture-Dependent Execution Time of Shor's Algorithm”, arXiv:quant-ph/0507023(2005).
[27] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental Realization of Shor’s Quantum Factoring Algorithm Using Nuclear Magnetic Resonance”, arXiv:quant-ph/0112176(2001).
[28] L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack”, Phys. Rev. Lett. 79, 325(1997).
[29] V. L. Ermakov and B. M. Fung, “Experimental Realization of a Continuous Version of the Grover Algorithm”, arXiv:quant-ph/0208145(2002).
[30] M. S. Anwar, D. Blazina, H. A. Carteret, S. B. Duckett, and J. A. Jones, “Implementing Grover’s Quantum Search on a Para-hydrogen based Pure State NMR Quantum Computer”, arXiv:quant-ph/0407091(2004).
[31] W. Diffie and M. Hellman, “New Directions in Cryptography”, IEEE Trans. Inf. Theory, IT-22, 644(1976).
[32] W. K. Wootters, and W. H. Zurek, “A Single Quantum cannot be Cloned”, Nature, 299, 802(1982).
[33] C. H. Bennett and G. Brassard, “The Dawn of a New Era for Quantum Cryptography: The Experimental Prototype is Working”, Sigact News 20, p. 78-82(1989).
[34] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum Cryptography with Entangled Photons”, Phys. Rev. Lett. 84, 4729(2000).
[35] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of Time-Bin Qubits over 50 km of Optical Fiber”, arXiv:quant-ph/0404124(2004).
[36] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation”, Nature, 390, 575 (1997).
[37] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic Quantum Teleportation with Atoms”, Nature, 429, 734(2004).
[38] M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic Quantum Teleportation of Atomic Qubits”, Nature, 429, 737(2004).
[39] D. M. Greenberger, M. A. Horne ,and A. Zeilinger, “Going beyond Bell's Theorem”, in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos(Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 73-76.
[40] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell's Theorem without Inequalities”, Am. J. Phys. 58, 1131(1990).
[41] N. D. Mermin, “Quantum Mysteries Revisited”, Am. J. Phys. 58, 731(1990).
[42] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable Multiparticle Entanglement of Trapped Ions”, Nature, 438, 643(2005).
[43] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000), p. 277-352.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-10公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-10起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信