§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0106201614354800
DOI 10.6846/TKU.2016.00006
論文名稱(中文) 鈍體後方渦旋與魚身擺動間相位對流場之影響
論文名稱(英文) Effect of Phase between The Vortex Shedding and The Field Swimming upon The Flow Field
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 余恬欣
研究生(英文) Tien-Hsin Yu
學號 602430091
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-05-13
論文頁數 89頁
口試委員 指導教授 - 湯敬民(095980@mail.tku.edu.tw)
委員 - 陳慶祥(cschen@mail.tku.edu.tw)
委員 - 湯同達
關鍵字(中) 數值模擬
圓柱
擺動魚隻
擺動相位
關鍵字(英) Numerical Simulation
Cylinder
Undulating fish
Phase
第三語言關鍵字
學科別分類
中文摘要
本研究主要透過計算流體力學軟體(ANSYS-FLUENT)模擬三維流場中阻礙物後方的魚隻擺動,探討魚在圓柱後方尾流區游動時與逸散渦流間之互動關係。文章中,固定圓柱與魚隻之間距(0.2m),讓魚隻在流場速度0.9m/s之自由流中游動,魚隻擺動周期為0.45秒,以1/6週期(0.075秒)為一個單位,並施以六種延遲,觀察其流場特性及觀察游動功率變化。

研究結果顯示,在 (0.000秒、0.075秒、0.150秒、0.225秒、0.300秒、0.375秒) 等六個不同之起始擺動時間點下, (0.075秒、0.225秒、0.300秒、0.375秒)等起始擺動時間點有較小之游動功率,而0.000秒及0.150秒等之起始擺動時間點有較大之游動功率。由壓力圖得知,前三個時間點(0.000s,0.075s,0.150s)之壓力分佈圖趨勢較為類似,但0.075秒之壓力數值較另外兩個時間點小了許多,反而與0.225秒、0.300秒、0.375秒之壓力數據較接近。其原因推測為魚隻前方渦漩與魚尾渦漩相互抵消,且魚隻擺動時高壓區位於擺動方向另一側。
英文摘要
This research simulated the characteristics of the flow field with an undulating fish behind a blunt body in three-dimension. A CFD software (ANSYS-FLUENT) was used to analyze the interaction of flow field induced by the vortex behind a blunt body and the vertical flow initiated by an undulating fish. Parameters included in this study were, the velocity of the fish swimming (0.4m / s), the distance between the blunt body and the fish (0.2m), the undulating period of swimming (0.45s). One sixth period of increment was used in analyzing the effect of various delay offset on the characteristics of the flow field and the variation of power required for swimming.
The results show that in six different starting undulating delays (0.000s, 0.075s, 0.150s, 0.225s, 0.300s, 0.375s) , the following four cases (0.075s, 0.225s, 0.300s, 0.375s) showed smaller swimming power required, while the other two (0.000s, 0.150s) needed higher swimming power. Results indicated that the first three cases exhibiting similar trend in pressure variations. However, the pressure variation of the case with delay of 0.075 was milder than the other two. Similar results were also observed in second group. It could be caused by the cancelling of vortex on one side of fish and the high pressure on the other side.
第三語言摘要
論文目次
目錄	                 i
圖目錄	                 iii
第一章  前言	        6
第二章  文獻回顧	        3
2.1  魚類構造與運動機制	3
2.2 魚類游動基本原理	5
2.3 魚類游動模式	        6
2.4 魚類常用參數	        13
2.5 研究動機與目的	15
第三章  研究方法	        17
3.1 物理模型	        17
3.2 統御方程式	        19
3.3 數值方法	        19
3.4 計算域網格及邊界條件設定21
3.5 動網格技術	21
3.6 軟體介紹	22
3.7 計算參數	23
3.8 網格獨立性分析	23
第四章  結果與討論	25
4.1 基本敘述	25
4.2延遲魚隻擺動相位後之游動功率	26
4.3魚隻擺動相位與壓力及游動功率探討	28
第五章 結論與未來展望	32
參考文獻	34
研討會論文簡要版	81

圖目錄
圖2- 1:魚類基本外型構造(Sfakiotakis et al.,1999)	40
圖2- 2:魚類擺尾的方式(Vogel,1994)	40
圖2- 3:魚類運動模式(Sfakiotakis et al.,1999)	40
圖2- 4:卡門渦流與反卡門渦流示意圖(Sfakiotakis et al.,1999)	41
圖2- 5:魚類外觀示意圖	41
圖2- 6:魚類尾鰭擺動與渦流生成示意圖(陳政宏,2002)	42
圖2- 7:魚類利用渦流產生升力(Liao,2003a)	42
圖2- 8:魚類群游之菱形排列結構(Liao,2014)	43
圖3- 1: NACA0012	43
圖3- 2: 魚身幾何外型	44
圖3- 3: 模型示意圖	44
圖3- 4: 計算域U∞	45
圖3- 5: 計算域分布示意圖	45
圖3- 6: 網格分布示意圖	46
圖3- 7: 網格疏密度測試	46
圖4- 1: 魚身(lower)游動功率	47
圖4- 2: 魚身(lower)游動功率	47
圖4- 3: 魚身(upper)游動功率	48
圖4- 4: 魚身(upper)游動功率	48
圖4- 5: 魚尾(lowtail)游動功率	49
圖4- 6: 魚尾(lowtail)游動功率	49
圖4- 7: 魚尾(uptail)游動功率	50
圖4- 8: 魚尾(uptail)游動功率	50
圖4- 9: 0.000秒開始擺動游動功率	51
圖4- 10: 0.075秒開始擺動游動功率	51
圖4- 11: 0.150秒開始擺動游動功率	52
圖4- 12: 0.225秒開始擺動游動功率	52
圖4- 13: 0.300秒開始擺動游動功率	53
圖4- 14: 0.375秒開始擺動游動功率	53
圖4- 15: 0.000秒開始擺動魚身游動功率	54
圖4- 16: 0.075秒開始擺動魚身游動功率	54
圖4- 17: 0.150秒開始擺動魚身游動功率	55
圖4- 18: 0.225秒開始擺動魚身游動功率	55
圖4- 19: 0.300秒開始擺動魚身游動功率	56
圖4- 20: 0.375秒開始擺動魚身游動功率	56
圖4- 21: 0.000秒開始擺動壓力圖(0.0秒~1.1秒)	57
圖4- 22: 0.000秒開始擺動壓力圖(1.2秒~2.3秒)	58
圖4- 23: 0.000秒開始擺動壓力圖(2.4秒~3.5秒)	59
圖4- 24: 0.000秒開始擺動壓力圖(3.6秒~4.0秒)	60
圖4- 25: 0.075秒開始擺動壓力圖(0.0秒~1.1秒)	61
圖4- 26: 0.075秒開始擺動壓力圖(1.2秒~2.3秒)	62
圖4- 27: 0.075秒開始擺動壓力圖(2.4秒~3.5秒)	63
圖4- 28: 0.075秒開始擺動壓力圖(3.6秒~3.8秒)	64
圖4- 29: 0.15秒開始擺動壓力圖(0.0秒~1.1秒)	65
圖4- 30: 0.15秒開始擺動壓力圖(1.2秒~2.3秒)	66
圖4- 31: 0.15秒開始擺動壓力圖(2.4秒~3.5秒)	67
圖4- 32: 0.15秒開始擺動壓力圖(3.6秒~3.8秒)	68
圖4- 33: 0.225秒開始擺動壓力圖(0.0秒~1.1秒)	69
圖4- 34: 0.225秒開始擺動壓力圖(1.2秒~2.3秒)	70
圖4- 35: 0.225秒開始擺動壓力圖(2.4秒~3.5秒)	71
圖4- 36: 0.225秒開始擺動壓力圖(3.6秒~4.0秒)	72
圖4- 37: 0.300秒開始擺動壓力圖(0.0秒~1.1秒)	73
圖4- 38: 0.300秒開始擺動壓力圖(1.2秒~2.3秒)	74
圖4- 39: 0.300秒開始擺動壓力圖(2.4秒~3.5秒)	75
圖4- 40: 0.375秒開始擺動壓力圖(0.0秒~1.1秒)	76
圖4- 41: 0.375秒開始擺動壓力圖(1.2秒~2.3秒)	77
圖4- 42: 0.375秒開始擺動壓力圖(2.4秒~3.5秒)	78
圖4- 43: 0.375秒開始擺動壓力圖(3.6秒~4.0秒)	79
圖4- 44:不同間距下之總功率比較(鍾宜芹,2015)	80
圖4- 45:0.000秒開始擺動之總功率	80
參考文獻
[1]	Wolfgang, M. J., “Hydrodynamics of flexible-body swimming motion,” 1999.
[2]	Yu, K., Hung, S., Hu, J., and Guo, C. Y., “Experimental research of fish-imitating propulsion,” Journal Huazhong University of Science and Technology (Nature Science Edition), Vol. 35, No. 11, 2007.
[3]	Yu, K., Hung, S., Hu, J., and Guo, C. Y., “Experimental research on a bionic propulsor with double tail-fins,” Journal Huazhong University of Science and Technology (Nature Science Edition), Vol. 29, No. 3, 2008.
[4]	Webb, P. W., “Form and function in fish swimming,” Science American, Vol. 251, pp. 72-82, 1984.
[5]	M. Sfakiotakis, D. M. Lane and J. B. C. Davies, ”Review of Fish Swimming Modes for Aquatic Locomotion,” IEEE Journal of oceanic Engineering, Vol. 24, No. 2, pp. 237-252, 1999.
[6]	Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., and Lauder, G. V.,“Passive propulsion in vortex wakes,” J. Fluid Mech., Vol. 549, pp. 385-402,2006.
[7]	Lighthill, M. J., and Blake, R. W., “Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory,” J.Fluid Mesh., Vol. 212, pp. 183-207,1990.
[8]	陳政宏, 李志揚, 2000, “淺談流體中生物的推進方法,” SciScape 專題文章,  http://www.sciscape.org/.
[9]	Fausch, K. D., “Experimental analysis of microhabitat selection by juvenile steelhead (Oncorhynchus mykiss) and coho salmon (O. kisutch) in a British-Columbia stream.” Canadian Journal Fisheries and Aquatic Sciences, Vol. 50, pp. 1198-1207, 1993.
[10]	Gerstner, C. L., “Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua,” Environmental Biology Fishes, Vol. 55, pp. 455-460, 1998.
[11]	Heggenes, J., “Flexible summer habitat selection by wild, allopatric brown trout in lotic environments,” Transactions of the American Fisheries Society, Vol. 131, pp. 287-298, 2002.
[12]	Liao, J. C., Beal, D. N., Lauder, G. V. and Traiantafyllou, M. S., “The Kármán gait: novel kinematics of rainbow trout swimming in a vortex street,” The Journal of Experimental Biology, Vol., 206,pp. 1059-1073,2006a.
[13]	Liao, J.C., Beal, D.N., Lauder, G.V., and Triantafyllou, M. S., “Fish exploiting vortices decrease muscle activity,” Science, Vol. 302, pp.1566-1569, 2003b.
[14]	Webb, P.W., “Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders,” The Journal of Experimental Biology, Vol.3, article7, 2004.
[15]	Alexander, R. M., “Hitching a lift hydrodynamically – in swimming, flying and cycling,” Journal of Biology, Vol.3, article 7, 2004.
[16]	Herskin, J., and Steffensen, J. F., “Energy saving in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds,” Journal of Fish Biology, Vol.53, pp. 336-376,1998.
[17]	Steffensen, J. F., Steinhausen, M. F., and Anderson, N. G., “Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forces swimmimg,” Marine Biology, Vol.148,pp.197-204,2005.
[18]	Fish, “Energetics of Swimming and Flying in Formation,” Comments on Theoretical Biology, Vol. 5, No. 5, pp.283-304, 1999.
[19]	Dong, G. J., and Lu, X.Y., “Characteristics of floe over traveling wavy foils in a side-by-side arrangement,” Physics of Fluids, Vol. 19, pp.057107, 2007.
[20]	Liao, J. C., “A review of fish swimming mechanics and behavior in altered flows,” philosophical Transaction of the Royal Society B, Vol. 362, pp.1973-1993,2007.
[21]	李蓮吟,魚類群游之流體動力學數值模擬研究,淡江大學航空太空工程學系碩士論文,2010.
[22]	Zhang N., Zheng Z.C., “Flow/pressure characteristics for flow over two tandom swimming fish,” Computers & Fluids, 2008.
[23]	Webb, P. W., and Kostecki, P. T., “The effect of size and swimming speed on locomotor kinematic of rainbow trout, ” The Journal of  ExperimentalBiology,Vol.109, pp. 77-95, 1984.
[24]	何筱晨,魚類節能游動機制的探討,國立台灣大學工學院機械工程學系碩士論文,2100.
[25]	Liao, J. C., “The role of the lateral line and vision on body kinematics and hydrodynamics preference of rainbow trout in turbulent flow,” The Journal of Experimental Biology, Vol.209, pp. 327-342, 2006.
[26]	Przybilla, A., Kunze, S., Rudert, A., Bleckmann, H., and Brecker, C., “Entraining in trout: a behavior and hydrodynamic analysis,” The Journal of Experimental Biology, Vol. 213, pp. 2976-2986, 2010.
[27]	Taguchi, M., and Liao, J.C., “Rainbow trout consume less oxygen in turbulence: The energetics of swimming behaviors at different speeds,” The Journal of Experimental Biology, Vol.214, pp.1428-1436, 2011.
[28]	Xiao, Q., Liu, W., Hu, J., “Computational study on near wake interation between undulation body and a D-section cylinder,” Ocean Engineering, Vol.38,pp.673-683,2011.
[29]	Borazjani, I. and F. Sotiropoulos, “Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes,” The Journal of Experimental Biology, Vol. 211, pp. 1541-1558, 2008.
[30]	李國偉,撓性尾鰭下游流場結構與推力之數值分析,國立中興大學機械工程研究所碩士論文, 2012.
[31]	徐曉鋒,萬德成,金槍魚自主波動游動的數值模擬,水動力學研究發展, Vol. 26, No. 2, 2011.
[32]	Chang, X., Zhang, L., and He, Z., “Numerical study of the thunniform mode of fish swimming with different Reynolds number and caudal fin shape,” Computers and Fluids, Vol. 68, pp.  54-70, 2012.
[33]	余政倫,魚類胸鰭張開與收合游動模式之流體動力學研究,國立清華大學動力機械工程學系博士論文, 2012.
[34]	G.V. Lauder, E. J. Anderson, J. Tangorra and P. G. A.Madder, ”Fish Biorobotics Kinematics and Hydrodynamics of Self-propulsion,” The Journal of Experimental Biology, Vol. 210, pp. 2767-2780, 2007.
[35]	鐘汶修,雙擺動推進翼的效率提升研究,國立台灣海洋大學系統工程暨造船學系碩士論文, 2012.
[36]	陳政宏,鯉魚如何躍龍門-水中生物的推進法,科學發展,12月版, pp. 48-51.2002
[37]	Webb, P. W., “Simple physical principle and vertebrate aquatic locomotion,” Amer. Zool., Vol. 28, pp. 709-725, 1988.
[38]	Triantafyllou, M. S., Triantafyllou, G. S. and Gopalkrishanan, R., “Optimal trust development in oscillation foils with application to fish propulsion,” J. Fluids Struct., Vol. 7, pp205-224, 1993.
[39]	Taylor, G. K., Nudds, R., and Thomas, A. L. R., “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, Vol. 425, pp. 707-711, 2003.
[40]	王柄豪,流場圓柱後方渦旋與魚擺動相位之流場特性研究,淡江大學航空太空工程學系碩士論文, 2013.
[41]	Zhu, Q., Wolfgang, M. J., Yue, D. K. P., and Triantafyllou, M. S., “Three-dimensional flow structure and vorticity control in fish-like swimming,” Journal of Fluid Mechanics, Vol. 468, pp.1-28, 2002.
[42]	Sheu, T. W.H., and Chen, Y. H., “Numerical study of flow field included by a locomotive fish in the moving meshes,” International Journal for Numerical Method in Engineering, Vol.69, pp. 2247-2263, 2007.
[43]	Garvin, J. W., Kureksiz, O., Breczinski, P. J., and Garvin, M. K., “A Method for an Image-Analysis-Based Two-Dimensional Computational Fluid Dynamics Simulation of Moving Fish,” Transactions of the American Fisheries Society, Vol. 141, pp. 185-198, 2012.
[44]	Issa, R. I., “Solution of the implicitly discretized fluid flow equations by operator-splitting,” Journal of Computational Physics, Vol. 62, pp. 40-65, 1986.
[45]	鍾宜芹,鈍體後方渦旋對魚擺動之影響的三維數值模擬,淡江大學航空太空工程學系碩士論文, 2015.
[46]	王懿友,圓柱後方渦旋與魚擺動之相位對耗能之影響,淡江大學航空太空工程學系碩士論文, 2015.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信