淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0106200700392300
中文論文名稱 利用區域化法推估台灣地區未設站地點年最大ㄧ日雨量之頻率
英文論文名稱 Frequency Analysis of Annual Maximum 1-Day Rainfall for Ungauged Sites in Taiwan Using Regionalization Approach
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 黃亮芸
研究生英文姓名 Liang-Yun Huang
電子信箱 694330530@s94.tku.edu.tw
學號 694330530
學位類別 碩士
語文別 中文
口試日期 2007-05-16
論文頁數 68頁
口試委員 指導教授-蕭政宗
委員-黃文政
委員-張麗秋
中文關鍵字 區域頻率分析  指數洪水法  線性動差  克利金  年最大一日雨量 
英文關鍵字 Regional frequency analysis  Index flood method  L-moment  Kriging  Annual maximum 1-day rainfall 
學科別分類 學科別應用科學環境工程
中文摘要 本文研究目的在於應用區域化方法以推估台灣地區未設站地點不同頻率之年最大一日雨量,本文首先利用指數洪水法(index flood method)配合由線性動差所推估之參數來建立區域頻率模式,並以克利金法(kriging)推估未設站地點之平均年最大一日雨量,以進行該地點之頻率分析。區域頻率模式的建立是以均勻區域為單元,本文將以集群分析(cluster analysis)依各測站之座標與年最大一日雨量之平均值及變異係數來劃分均勻區域,並以線性動差為基礎的不一致及異質性估量來檢定所劃分區域內資料的一致性及均勻性,其次再以適合度估量選取最佳區域頻率模式。本文以台灣地區77個雨量站的年最大一日雨量為分析基礎,經以集群分析判定最佳均勻區域劃分數為三區,各區域之最佳頻率分佈除一區為通用帕雷托分佈(generalized Pareto distribution)外,其餘二區均為皮爾遜第Ⅲ型分佈Pearson type Ⅲ distribution)。至於未設站地點之頻率分析,本文將先以克利金法建立年最大一日雨量平均值及變異係數之空間變異量(variogram)模式,未設站地點即可據以推估其年最大一日雨量平均值及變異係數,其次計算未設站地點座標與年最大一日雨量平均值及變異係數至各均勻區域中心之距離,以最小距離來判定未設站地點所歸屬的區域,之後即可利用該區域所建立之區域頻率模式及該地點推估之平均年最大一日雨量進行該地點之頻率分析。
英文摘要 The purpose of the study aims to estimate frequencies of annual maximum 1-day rainfall for ungauged sites in Taiwan using regionalization approach. The index flood method with parameters estimated by L-moments is used to establish the regional frequency model. Kriging is then employed to estimate the mean annual maximum 1-day rainfall of ungauged sites in order to analyze the rainfall magnitudes of various frequencies. Delineation of homogeneous regions is determined by cluster analysis in this study based on the coordinates of the rainfall gauge stations, the means and coefficient of variation of the annual maximum 1-day rainfall. The L-moment based discordancy, heterogeneity, and goodness-of-fit measures are then used to detect unusual sites and select the optimal regional probability models. In this study, a total of 77 rainfall gauge stations are used as the basis to estimate the frequencies of the annual maximum 1-day rainfall for ungauged sites. The number of homogeneous regions derived by cluster analysis is 3. The best regional probability model for one region is Pearson type Ⅲ distribution, and generalized Pareto distribution is the best model for the other two regions. Frequency analysis for ungauged sites needs to establish the variogram models of the mean and coefficient of variation of the annual maximum 1-day rainfall first. The obtained variogram models is then used to estimate the mean annual maximum 1-day rainfall for the ungauged sites. The ungauged sites belong to which homogeneous region depend on the minimum distance to the centroid of the homogeneous regions. Combined with the derived regional frequency model and estimated mean annual maximum 1-day rainfall, the computing procedures of frequency analysis for ungauged sites are identical with the procedures of gauged sites.
論文目次 誌謝 I
中文摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
符號表 X
第一章、緒論 1
1.1研究動機及目的 1
1.2文獻回顧 2
1.3本文架構 4
第二章、研究方法 5
2.1雨量資料趨勢檢定 5
2.2區域頻率模式的建立 6
2.2.1 均勻區域的劃分 7
2.2.2指數洪水法 11
2.2.3線性動差法推估參數 13
2.2.4資料不一致性檢定 15
2.2.5資料均勻性檢定 16
2.2.6機率分佈適合度檢定 17
2.3無因次區域年最大一日雨量機率分佈 18
2.4 區域頻率分析 23
2.4.1設站地點之頻率分析 23
2.4.2未設站地點之頻率分析 24
第三章、雨量資料概述 34
第四章、結果與討論 35
4.1年最大一日雨量趨勢檢定 35
4.2均勻區域劃分結果 35
4.3均勻區域內年最大一日雨量檢定 43
4.3.1一致性檢定 43
4.3.2均勻性檢定 43
4.4均勻區域內頻率模式建立 44
4.5設站地點之頻率分析 47
4.6未設站地點之頻率分析 54
4.7區域頻率模式驗證 60
五、結論 62
參考文獻 63
表目錄

表2- 1不一致估量的刪除標準 16
表3- 1本文所選用雨量站基本資料 29
表3- 2本文所選用各雨量站之年最大一日雨量特性 31
表4- 1各區域各雨量站動差比及不一致估量 37
表4- 2各區域異質性估量 44
表4- 3各區域適合度估量 45
表4- 4各區域所選定之機率分佈函數及其參數值 45
表4- 5各區域各站不同復現期之年最大一日雨量 52
表4- 6未設站地點之頻率分析 59
表4- 7各均勻區域刪除站頻率分析誤差 60
圖目錄

圖3- 1本文所選用雨量站相關位置圖 28
圖3- 2各雨量站年最大ㄧ日雨量平均值之等值線圖 33
圖3- 3各雨量站年最大ㄧ日雨量變異係數之等值線圖 34
圖4- 1不同分群數目之側影圖 39
圖4-2各均勻區域分區結果 42
圖4-3各區域之無因次年最大一日雨量機率分佈函數 46
圖4-4各區域之無因次年最大一日雨量分位數 47
圖4-5各區域不同復現期與無因次年最大一日雨量關係圖 48
圖4- 6第Ⅰ區各站不同復現期之年最大一日雨量關係圖 50
圖4- 7第Ⅱ區各站不同復現期之年最大一日雨量關係圖 50
圖4- 8第Ⅲ區各站不同復現期之年最大一日雨量關係圖 51
圖4- 9理論變異量模式與實測變異量之比較 55
圖4- 10假設未設站地點之位置圖 57



參考文獻 陳伸賢,2006,易淹水地區水患治理計劃之推動,水資源管理,第8卷,第1期,第1-6頁。
周芬、郭生練,肖義,2004,無資料地區設計洪水的區域頻率分析,人民長江,第35卷,第5期,第29-31頁。
陳永勤、黃國如,2005,基於線性矩法的東江流域區域枯水頻率分析,應用基礎與工程科學學報,第13卷,第4期,第409-416頁
蕭政宗、楊志傑,2006,台灣地區之區域乾旱頻率分析,農業工程學報,第50卷,第2期,第83-101頁。
蕭政宗、黃亮芸,2006,台灣地區一日暴雨之區域頻率分析,第十五屆水利工程研討會論文集,第D35-D42頁。
蕭政宗、楊欣怡,2007,以指數洪水法及線性動差法探討未設站之洪水頻率分析,台灣水利,(已接受)。
Atiem, I. A., and Harmancioglu, N. B., 2006, Assessment of regional floods using L-moments: The case of the River Nile, Water Resources Management, 20(5), 723-747.
Belle, G. V., and Hughes, J. P., 1984, Nonparametric tests for trend in water quality, Water Resources Research, 20(1), 127-136.
Burn, D. H., 1989, Cluster analysis as applied to regional flood frequency, Journal of Water Resources Planning and Management, 115(5), 567-582.
Burn, D. H., 1990a, An appraisal of the region of influence approach to flood analysis, Hydrological Sciences Journal, 35(2), 149-165.
Burn, D. H., 1990b, Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, 115(5), 2257-2265.
Chiles, J. P., and Delfiner, P., 1999, Geostatistics: Modeling Spatical Uncentaiuty, John Wiley & Sons, Inc., New York.
Cunnane, C., 1988, Methods and merits of regional flood frequency analysis, Journal of Hydrology, 100, 269-290.
Dalrymple, T., 1960, Flood Frequency Analyses, U. S. Geological Survey Water Supply Paper, 1543-A.
Fowler, H. J., and Kilsby, C. G., 2003, A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000, International Journal of Climatology, 23(11), 1313-1334.
Gellens, D., 2002, Combining regional approach and data extension procedure for assessing GEV distribution of extreme precipitation in Belgium, Journal of Hydrology, 268, 113-126.
Greenwood, J. A., Landwehr, J., M. and Matalas, N. C., 1979, Probability weighted moment: Definition and relation to parameter of several distribution expressed in inverse form, Water Resources Research, 15(5), 1049-1054.
Groupe de recherche en hydrologic statistique (GREHYS), 1996, Presentation and review of some methods for regional flood frequency analysis, Journal of Hydrology, 186, 63-84.
Guttman, N. B., Hosking, J. R. M., and Waillis, J., 1993, Regional precipitation quantile values for the continental United States computed from L-moments, Journal of Climate, 6(12), 2326-2340.
Haan, C. T., 1977, Statistical Methods in Hydrology, Iowa State University Press.
Hall, M. J., and Minns, A. W., 1999, The classification of hydrologically homogeneous regions, Hydrological Science Journal, 44(5), 693-704.
Hirsch, R. M., Slack, J. R., and Smith, R. A., 1982, Techniques of trend analysis for monthly water quality data, Water Resources Research, 18(1), 107-121.
Hosking, J. R. M., and Wallis, J. R., 1988, The effect of intersite dependence on regional flood frequency analysis, Water Resources Research, 24(4), 588-600.
Hosking, J. R. M., 1990, L-moments: Analysis and estimation of distribution using linear combinations of order statistics, Journal of the Royal Statistical Society, Series B, 52(1), 105-124.
Hosking, J. R. M., and Wallis, J. R., 1993, Some statistics useful in regional frequency analysis, Water Resources Research, 29(2), 271-281.
Hosking, J. R. M., and Wallis, J. R., 1997, Regional Frequency Analysis: An Approach Based on L-moments, Cambridge University Press, New York.
Isaaks, E. H., and Srivastava, R. H., 1989, An Introduction to Applied Geostatistics, Oxford University Press, New York.
Javelle, P., Quarda, T. B. M. J., Lang, M., Bobee, B., Galea, G., and Gresillon, J. M., 2002, Development of regional flood-duration-frequency curves based on the index-flood method, Journal of Hydrology, 258, 249-259.
Johnson, R. A., and Wichern, D. W., 2002, Applied Multivariate statistical Analysis, 5th Ed., Pearson, New Jersey.
Kaufman, L., and Rousseeuw, P. J., 2005, Finding Groups in Data: An Introduction to Cluster Analysis, 2nd Ed., John Wiley and Sons, Inc., New York, NY.
Kendall, M. G., 1975, Rank Correlation Measures, 1stEd., Charles Griffin, London.
Kjeldsen, T. R., Smithers, J. C., and Schulze, R. R., 2002, Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method, Journal of Hydrology, 255, 194-211.
Kumar, K., Chatterjee, C., Kumar, S., Lohani, A., K and Singh, R. D., 2003, Development of regional flood frequency relationships using L-moment for middle Ganga plains Subzone 1(f) of India, Water Resources Management, 17(4), 243-257.
Kumar, R., and Chatterjee, C., 2005, Region flood frequency analysis using L-moment for North Brahmaputra of India, Journal of Hydrologic Engineering, 10(1), 1-7.
Lim, Y. H., and Lye, L. M., 2003, Regional flood estimation for ungauged basins in Sarawak, Malaysia, Hydrological Sciences Journal, 48(1), 79-94.
Mann, H. B., 1945, Non-parametric tests against trend, Econometrica, 13, 245-259.
Mazvimavi, D., Meijerink, A. M. J., and Stein, A., 2004, Prediction of base flows from basin characteristics: A case study from Zimbabwe, Hydrological Sciences Journal, 49(4), 703-715.
Nathan, R. J., and McMahon, T. A., 1990, Identification of homogeneous regions for the purposes of regionalization, Journal of Hydrology, 121, 217-238.
Parida, B. P., Kachroo, R. K., and Shrestha, D. B., 1998, Region flood frequency analysis of Mahi-Sabarmati basin (subzone 3-a) using index flood procedure with L-moment, Water Resources Management, 12(1), 1-12.
Trefry, C. M., Watkins, D. W., and Johnson, D., 2005, Regional rainfall frequency analysis for the State of Michigan, Journal of Hydrologic Engineering, 10(6), 437-449.
Zhang, J., and Hall, M. J., 2004, Regional flood frequency analysis for the Gan-Ming River basin in China, Journal of Hydrology, 296, 98-117.
Zrinji, Z., and Burn, D. H., 1994, Flood frequency analysis for ungauged sites using a region of influence approach, Journal of Hydrology, 153, 1-21.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信