§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0104201400531800
DOI 10.6846/TKU.2014.00002
論文名稱(中文) 以冷溶劑誘導相分離法制備 PA 12 薄膜及其在分離程序的應用
論文名稱(英文) Preparation of Polyamide 12 membranes by Cold-solvent Induced Phase Separation and their application in separation processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 蔡治豪
研究生(英文) Chih-Hao Tsai
學號 601400376
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-03-14
論文頁數 89頁
口試委員 指導教授 - 鄭廖平
委員 - 張旭賢
委員 - 林俊良
關鍵字(中) 尼龍-12
多孔性薄膜
冷溶劑誘導相分離法
薄膜蒸餾
熟化
關鍵字(英) Polyamide 12(PA 12)
cold-solvent induced separation(CIPS)
non-solvent induced phase separation(NIPS)
thermal induced phase separation(TIPS)
aging
porous membrane
第三語言關鍵字
學科別分類
中文摘要
本研究冷溶劑誘導相分離法(cold solvent induced phase separation, CIPS)製備尼龍-12薄膜,與一般濕式相轉換製膜法的不同在於,沉澱液使用的是用來配製膜液的溶劑,它在浸漬沉澱過程中不會有濃度改變的問題,不像濕式法必須不斷更新沉澱液來維持濃度,造成溶劑浪費及破壞環境的問題,另一方面也增加成本負擔,本研究使用純甲酸作為沉澱液,並藉由控制製膜液之熟化溫度、熟化時間及沉澱液溫度等操作變因,使製膜液的晶核數目、黏度增加,改變孔隙度大小和結構,以及增強薄膜強度。當製膜液經過適當的熟化(45℃,2小時),薄膜結構產生束狀結構之互穿雙連續多孔薄膜,其結構、孔隙度和孔洞尺寸以及薄膜抗張強度互相影響,孔隙度約為60~40%之間,並由DSC和XRD的測量得知,尼龍-12薄膜的熔點約為167℃,薄膜為α與γ型態的結晶結構,結晶度約為27%,且薄膜上表面之接觸角達100o以上,為疏水型薄膜,可用於薄膜蒸餾與微過濾等分離程序。本研究利用CIPS法所製備之尼龍-12薄膜進行薄膜蒸餾之分離程序,以3.5wt%之食鹽水溶液進行淡化,其阻隔率皆可達到99%以上,分離效果相當良好,並且最高之通量約為5 LMH,與相同條件下進行MD測試之市售PTFE、PVDF等薄膜進行比較,探討薄膜結構間的差異對薄膜蒸餾的影響進行探討,分別以電子顯微鏡(SEM)及影像分析軟體(Image J),分別觀察薄膜的型態結構以及分別計算上、下表面及截面的孔隙度,其中市售之PVDF薄膜之孔隙度與尼龍-12薄膜相近,但尼龍-12薄膜成束狀互穿的多孔型結構,與具有巨孔型之液胞且皮層結構較為明顯之PVDF薄膜相比,其穿透性以尼龍-12薄膜較高,其通量已高過PVDF-C之通量(3 LMH),因此可知薄膜結構對薄膜蒸餾的效率具有相當的影響。
英文摘要
In this research we focused on investigation of the formation of polyamide 12 (PA12) flat-sheet membrane by cold-solvent induced phase separation (CIPS) process. CIPS was different from traditional immersion precipitation method. Because the cold precipitation bath (in this research we use formic acid FA) could keep its concentration during the immersion process, it could be used repeatedly. In addition to dope’s concentration and bath temperature, we also found that aging is an important factor that affected membrane formation. This was because aging could create nuclei in the dope, which lead to significant decrement of particle size in the formed membranes. When the aging temperature was set at 45 oC (bleow the crystallization line) and bath temperature at 10 oC, the membrane exhibited a particulate bi-continuous structure. The water permeation flux and tensile strength of the membrane were measured and the results indicated that they were correlated with the porosity, pore size, and membrane morphology. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses indicated that the membranes had crysrallinity of ~27% and DSC data showed that all membranes had a similar crystal melting behavior with Tm close to 167 oC. 
Prepared PA-12 membranes, together with commercial PTFE and PVDF membranes, were applied in direct contact membrane distillation (DCMD) processes to separate NaCl aqueous solutions. The highest permeation flux of PA-12 membrane that could be reached was 5 LMH and at this flux the rejection was > 99%. Compared with the tested commercial PVDF membrane, which has a similar pore size to the PA-12 membrane, but different porous structure - commercial PVDF had a denser top surface and a cross section composed of macrovoids and closed cellular pores. Therefore, its highest permeation flux was 3 LMH smaller than the PA-12 membrane. As to the commercial PTFE membrane, the porosity was 80%, the thickness was only ~50μm, and the pores are well interconnected. Therefore, water vapor could pass through the membrane easily, and the highest permeation flux reached 13 LMH. In other words, membrane structure had great influence on the performance in DCMD processes.
第三語言摘要
論文目次
總目錄
總目錄IV
圖目錄VI
表目錄 VIII
第一章 序論1
1.1前言和研究目的1
1.2參考文獻2
第二章 薄膜成型原理與應用3
2.1 高分子薄膜3
2.1.1定義3
2.1.2 薄膜之孔隙結構3
2.1.3 薄膜製備6
2.4冷溶劑誘導相分離法(CIPS)	14
2.5薄膜蒸餾16
2.5.1 質量傳輸19
2.5.2 熱量傳輸21
2.5.3溫度極化(Temperature polarization)	23
2.5.4 濃度極化(Concentration polarization)23
2.6微過濾(MF)25
2.6.2 微過濾種類	26
2.7參考文獻28
第三章 尼龍-12薄膜之合成與物性分析34
3.1前言	34
3.2實驗	36
3.2實驗方法與步驟38
3.2.1薄膜的製備38
3.2.2相圖之製備39
3.2.3薄膜水通量測試39
3.4結果與討論43
3.4.1尼龍12-FA 兩成分系統之相圖43
3.4.2薄膜SEM結構分析47
3.4.3尼龍-12薄膜之孔隙度測量58
3.4.4尼龍-12薄膜之抗張強度及接觸角58
3.4.5尼龍-12 薄膜之水通量檢測(Water Flux)60
3.4.6尼龍-12薄膜之DSC測試61
3.4.7尼龍-12薄膜之XRD測試62
3.4.8尼龍-12 薄膜微過濾(MF)64
3.5 結論	65
3.7參考文獻66
第四章  薄膜蒸餾(Membrane distillation,MD)	71
4.1前言71
4.2實驗藥品與儀器73
4.3實驗方法與步驟74
4.3.1配製食鹽水74
4.3.2薄膜蒸餾74
4.4結果與討論76
4.4.1蒸氣壓差(DP)對通量影響	76
4.4.2流速對產物通量影響78
4.4.3濃度對產水通量的影響79
4.4.4 薄膜結構對通量影響80
4.5結論	86
4.6參考文獻87
圖目錄
Fig 2.1 代表各結晶階段之薄膜5
Fig 2.2液-液相分離主宰之薄膜結構6
Fig 2.3:TIPS法製膜之簡易模具示意圖8
Fig 2.4 將高分子溶液降溫,使其發生相分離之示意圖10
Fig 2.5溶劑-高分子兩成份系統之分相示意圖11
Fig 2.6  (a)三成分系統相圖;(b)浸漬於不同組成沉澱槽之製膜液走向示意圖	13
Fig 2.7 CIPS介面之質傳與熱傳示意圖14
Fig 2.8 以CIPS與TIPS製膜時,製膜液之走向示意圖15
Fig 2.9當質傳~熱傳時CIPS程序之製膜液	16
Fig 2.11蒸氣在薄膜蒸餾程序的傳輸現象示意圖17
Fig 2.12 Kundsen flow19
Fig 2.14薄膜蒸餾之熱傳阻力示意圖22
Fig 2.15濃度邊界層示意圖23
Fig 2.16 微過濾膜的各種截留作用26
Fig 2.17 (a) dead end (b) cross flow26
Fig 3.1 (a) homogenous solution, (b) polymer gel39
Fig 3.2藍色葡聚醣水溶液之校正曲線42
Fig 3.3 尼龍-12/FA 兩成分系統之gelation line45
Fig 3.4 尼龍-12/FA兩成分系統之 binodal 與 spinodal line45
Fig 3.5(a) ME薄膜之上表面SEM影像圖,(b) ME薄膜之上表面高倍率SEM影像圖49
Fig 3.6 POM 影像圖51
Fig 3.7 (a) MD薄膜之上表面SEM 影像圖, (b) MD薄膜之圖(a)高倍率SEM 影像圖52
Fig 3.8 MA薄膜之SEM影像圖53
Fig 3.9 MA薄膜之高倍率SEM影像圖 54
Fig 3.10以浸製沉澱法製備(22%)尼龍-12/甲酸 薄膜,浸置常溫純水沉澱槽	55
Fig 3.11 MB薄膜之SEM影像圖56
Fig3.12 MC薄膜之SEM影像圖57
Fig 3.15薄膜水通量測試60
Fig 3.16微過濾之藍色葡聚醣(2000k Da)測試之通量及阻隔率61
Fig 3.17尼龍-12薄膜之XRD繞射峰圖譜63
Fig 3.18微過濾之藍色葡聚醣(2000k Da)測試之通量及阻隔率64
Fig 4.1 NaCl(aq) 之校正曲線74
Fig 4.2 (a)直接接觸式薄膜蒸餾裝置圖; (b)模組裝置剖面圖75
Fig 4.3市售PTFE薄膜、市售PVDF薄膜及MA薄膜在進料端(純水)在不同溫度下的薄膜蒸餾之通量77
Fig 4.4市售PTFE薄膜、市售PVDF薄膜及MA薄膜在不同流速下之薄膜蒸餾之通量,進料端(純水)溫度50℃ 78
Fig 4.5 MA薄膜在不同濃度之食鹽水下之薄膜蒸餾的通量,流速0.7 L/min、50℃ 79
Fig 4.6自製PVDF薄膜之SEM影像圖82
Fig 4.7市售PVDF薄膜之SEM影像圖83
Fig 4.8市售PTFE薄膜之SEM影像圖84




表目錄
Table 1.1 薄膜的應用2
Table 1.2商用薄膜的結構、材料和分離機製2
Table 3.1尼龍-12薄膜之製膜條件及代號	38
Table 3.2尼龍-12與甲酸物性參數表46
Table 3.3尼龍-12 薄膜之孔隙度58
Table 3.4尼龍-12薄膜之接觸角與抗張強度59
Table 3.5尼龍-12薄膜之結晶度、熱焓、熔點61
Table 3.6尼龍-12之結晶類型及繞射峰角度62
Table 3.7 XRD之結晶度63
Table 3.8 Blue Dextran 2000kDa之微過濾通量及阻隔率64
Table 4.2薄膜蒸餾在不同濃度之食鹽水之通量79
Table 4.3不同疏水型薄膜的薄膜蒸餾之通量及阻隔率85
參考文獻
第一章
【1】Heinrich Strathmann, Introduction to Membrane Science and Technology, Wiley(2012)

第二章
【1】M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, second edition, Kluwer Academic Publishers, 1991.

【2】郭玟正,曾添文,薄膜分離,高立圖書館公司,台北 (1988)。

【3】 A. Bottino, G. Capannelli, O. Monticelli, P. Piaggio, Poly(vinylidene fluoride) with improved functionalizationfor membrane production , J. Membr.Sci., 166 (2000) 23-39.

【4】K.Y. Lin, D.M. Wang, J.Y. Lai, Macromolecules, Nonsolvent-induced gelation and its effect on membrane morphology, 35 (2002) 6697-6706.

【5】D.L. Wang, K. Li, W.K. Teo, Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives, J. Membr. Sci.,178 (2000) 13-23.

【6】D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions, Eur. Polym. J., 42 (2006) 2407-2418.

【7】A. Bottino, G.R. Camera, G. Capannelli, S. Munari, The formation of microporous polyvinylidene difluoride membranes by phase separation, J. Membr. Sci., 57 (1991) 1-20.

【8】T.H. Young, D.T. Lin, L.Y. Chen, Y.H. Huang, W.Y. Chiu, Membranes with a particulate morphology prepared by a dry–wet casting process, Polymer, 40 (1999) 5257-5264.

【9】J.Y. Kim, H. K. Lee, K. J. Bank, S. C. Kim, Liquid-liquid phase separation in polysulfone/solvent/water systems,J. Appl. Polym. Sci., 65 (1997) 2643-2653.

【10】L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology, J. Polym. Sci.: Part B: Polym. Phys. 33 (1995) 211-222.

【11】L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems II. Precipitation dynamics, J. Polym. Sci.: Part B: Polym. Phys. 33, (1995) 223.

【12】L.P. Cheng, A.W. Dwan, C.C. Gryte, Isothermal phase behavior of Nylon-6, -66, and -610 polyamides in formic acid–water systems, J. Polym. Sci.: Part B: Polym. Phys., 32 (1994) 1183-1190.

【13】C.H. Shih, C.C. Gryte, L.P. Cheng, Morphology of membranes formed by the isothermal precipitation of polyamide solutions from water/formic acid systems, J. Appl. Polym. Sci., 96 (2005) 944.

【14】T. Tanaka, D.R. Lloyd, Formation of poly(l-lactic acid) microfiltration membranes via thermally induced phase separation, J. Membr. Sci., 238 (2004) 65-73.

【15】P.M. Atkinson, D.R. Lloyd, Anisotropic flat sheet membrane formation via TIPS: thermal effects, J. Membr. Sci., 171 (2000) 1-18.

【16】H. Matsuyama, T. Maki, M. Teramoto, K. Asano, Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation, J. Membr. Sci., 204 (2002) 323-328.

【17】 H. Matsuyama, S. Berghmans, D.R. Lloyd, Formation of hydrophilic microporous membranes via thermally induced phase separation, J. Membr. Sci., 142 (1998) 213-224.

【18】H. Matsuyama, S. Berghmans, D.R. Lloyd, Formation of anisotropic membranes via thermally induced phase separation, Polymer, 40 (1999) 2289-2301.

【19】M. Shang, H. Matsuyama, T. Maki, M. Teramoto, D.R. Lloyd, Effect of crystallization and liquid–liquid phase separation on phase-separation kinetics in poly(ethylene-co-vinyl alcohol)/glycerol solution, J. Polym. Sci. Polym. Phys., 41 (2003) 194-201.

【20】M. Shang, H. Matsuyama, T. Maki, M. Teramoto, D.R. Lloyd, Preparation and characterization of poly(ethylene-co-vinyl alcohol) membranes via thermally induced liquid–liquid phase separation, J. Appl. Polym. Sci., 87 (2003) 853-860.

【21】W. Yave, R. Quijada, D. Serafini, D.R. Lloyd, Effect of the polypropylene type on polymer–diluent phase diagrams and membrane structure in membranes formed via the TIPS process: Part I. Metallocene and Ziegler–Natta polypropylenes, J. Membr.Sci., 263 (2005) 146-153.
【22】L. H. Sperling, Introduction to Physical Polymer Science, 4th Edition, Cp.4, (2001) 123.

【23】P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, J. Membr. Sci., 117  (1996) 1-31.

【24】H. C. Vadalia, H. K. Lee, A. S. Myerson, K. Levon, Thermally induced phase separation in ternary crystallizable polymer solutions, J. Membr. Sci., 89 (1994) 37-50.

【25】M. Findley, Vaporization through Porous Membranes, I&EC Process Design and Development, 6 (1967) 226-230.

【26】M. Findley, Mass and heat transfer relations in evaporation through porous membranes, AICHE J., 15 (1969) 483-489.

【27】K. Smolders and A. C. M. Franken, Terminology for Membrane Distillation, Desalination, 72 (1989) 249-262.

【28】K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1-25.

【29】F. A. Banat, Jana Simandl, Desalination by Membrane Distillation: A Parametric Study, Separ. Sci. & Tech., 33 (1998) 201-226.

【30】K. W. Lawson and D. R. Lloyd, Membrane distillation. II. Direct contact MD,
J. Membr. Sci., 120 (1996) 123-133.

【31】F. A. Banat and J. Simandl, Theoretical and experimental study in membrane distillation, Desalination, 95 (1994) 39-52.

【32】K. W. Lawson and D. R. Lloyd, Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation, J. Membr. Sci., 120 (1996) 111-121.

【33】K.W. Lawson, D.R. Lloyd, A procedure for environmental impact assessments (EIA) for seawater desalination plants, Distillation, 124 (1997) 1–12.

【34】M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J.Membr.Sci., 285 (2006) 4–29.

【35】 F.A. Banat, J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Technol., 33 (2) (1998) 201–226.

【36】L. Vanysacker, Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community, J. Membr. Sci.,453 (2014) 394–401

【37】Nouha Tahri, Development of an asymmetric carbon microfiltration membrane:
Application to the treatment of industrial textile wastewater, Separation and Purification Technology, 118 (2013) 179–187

【38】Aporn Laorko, Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration, Journal of Food Engineering, 116 (2013) 554–561

【40】R.W. Field, D. WU, Critical flux concept for microfiltration fouling, J.Membr.Sci., 100 ( 1995 ) 259-272 

【41】M.T. Hung, J.C. Liu, Microfiltration for separation of green algae from water, Colloids Surf., B, 51 (2006) 157–164

【42】Hsu-Hsien Chang, Konstantions Beltsios, Dar-Jong Lin, L.P. Cheng, Formation of Polyamide 12 Membranes via Thermal-Nonsolvent Induced Phase Separation, Journal of Applied Polymer Science,130(1) (2013)14-24

第三章


【1】M.I. Kohan, Nylon plastic handbook, New York : Hanser/Gardner (1995).

【2】L.P.Cheng, A.H. Dawn, C.C. Gryte, Isothermal Phase Behavior of Nylon-6,-66,and-610 Polamides in Formic Acid-Water Systems,J. Polym.Sci.,Part B:Polym.Phys.32 (1994) 1183-1190.

【3】 J.Y. Lai, Y.H. Chu, S.L. Huang, Y.L. Yin, Separation of Water-Alcohol Mixtures by Pervaporation Through Asymmetric Nylon 4 Membrane, J. Appl. Polym. Sci. 53 (1994) 999-1009.

【4】L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology, J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 211-222.

【5】L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems II. Precipitation dynamics,J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 223.

【6】A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann, Induced phase separation with crystallizable nylons. I.Mass transfer processes for nylon 4,6, J Membr. Sci. 121 (1996) 37-49.  

【7】A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann, Induced phase separation with crystallizable nylons. II. Relation to final membrane morphology, J. Membr. Sci. 121 (1996) 51-58.

【8】M. Zeni, R. Riveros, J.F.d. Souza, K. Mello, C. Meireles, G.R. Filho, Morphologic analysis of porous polyamide 6,6 membranes prepared by phase inversion, Desalination 221 (2008) 294-297.

【9】C.H. Shih, C.C. Gryte, L.P. Cheng, Morphology of Membranes Formed by the Isothermal Precipitation of Polyamide Solutions from Water/Formic Acid Systems, J. Appl. Polym. Sci. 96 (2005) 944–960.

【10】D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356-367.

【11】D.J. Lin , L.P. Cheng, S.P. Lin, Effect of compatible nucleation seeds on the morphology of porous Nylon 6 membrane, Desalination 145 (2002) 31-37.

【12】Hsu-Hsien Chang, Dar-Jong Lin, L.P. Cheng, Formation of Polyamide 12 membranes via thermal-nonsolvent induced phase separation method, J. Polym.Sci.130(2013)14-24.

【13】St′ephane Dupin , Olivier Lame, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering, European Polymer Journal 48 (2012) 1611–1621

【14】B. Lecouvet, J.G. Gutierrez, M. Sclavons, C. Bailly, Structureeproperty relationships in polyamide 12/halloysite nanotube nanocomposites,Polymer Degradation and Stability 96 (2011) 226-235


【15】 Siddharth Ram Athreya, Kyriaki Kalaitzidou, Suman Das, Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding, Composites Science and Technology , 71 (2011) 506–510

【16】L.P. Cheng, T.H. Young, W.Y. Chuang, L.Y. Chen, L.W. Chen, The formation mechanism of membranes prepared from the nonsolvent–solvent–crystalline polymer systems, Polymer , 42 (2001) 443-451.

【17】Subiman Ghosh , D. Khastgir , Anil K. Bhowmick, Thermal degradation and ageing of segmented polyamides, Polymer Degradation and Stability, 67 (2000) 427-436.

【18】Dhiraj K. Mahajan, Rafael Estevez, Ageing and rejuvenation in glassy amorphous polymers, Journal of the Mechanics and Physics of Solids 58 (2010) 1474–1488.

【19】Myer Kutz, Handbook of Environmental Degradation of Materials (Second Edition), 2012, 213-242

【20】Alfred Rudin, Elements of Polymer Science and Engineering (Second Edition),2013,149-229



【21】Lin DJ, Beltsios K, Chang CL, and Cheng LP. Journal of Polymer Science Part B-Polymer Physics 2003;41(13):1578-1588.

【22】Lloyd DR, Kinzer KE, Tseng HS, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, J. Membr.sci., (1990)239- 261

【23】 Liu B, Du QG, and Yang YL. J. Membr. Sci., The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation, 180 (2000) 81-92.

【24】Caneba GT, Soong DS, Polymer membrane formation through the thermal-inversion process. 1. Experimental study of membrane structure formation,Macromolecules,18 (1985) 2545-2555.

【25】Yave W, Quijada R, Serafini D, and Lloyd DR. J. Membr. Sci., Effect of the polypropylene type on polymer–diluent phase diagrams and membrane structure in membranes formed via the TIPS process: Part I. Metallocene and Ziegler–Natta polypropylenes, 263 (2005) 146-153

【26】Matsuyama H, Maki T, Teramoto M, and Asano K. J. Membr. Sci., Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation, 204 (2002) 323-328

【27】Elena Guillen-Burrieza, RinkuThomas, BilalMansoor, DanielJohnson, NidalHilal, Hassan Arafat, Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD), J.Membr.Sci.438 (2013) 126–139

【28】J. Bicerano, J.F. Douglas, D.A. brunei, Model for the Viscosity of Particle Dispersions, Polymer Reviews, C39(4) (1999) 561-642

【29】S. Rhee, J.L. White, Crystal structure and morphology of biaxially oriented polyamide 12 films, J. Polym. Sci., Part B:Polym. Phys., 40 (2002) 1189-1200.

【30】A. Asadinezhad, S.H. Jafari, H.A. Khonakdar, F. Bohme, R. Hasler, L.Haussler, Kinetics of isothermal crystallization and subsequent melting behavior of PTT/PA12 blend,J. Appl. Polym. Sci., 106 (2007) 1964-1971.

第四章

【1】Abdullah Alkhudhiri,  Naif Darwish,  Nidal Hilal, Membrane distillation: A comprehensive review,  Desalination, 287 (2012) 2–18.

【2】Hui Ling Yang, Chihpin Huang, Justin Chun-Te Lin, Seasonal fouling on seawater desalination RO membrane, Desalination, 250 (2010) 548–552.

【3】Aporn Laorko, Sasitorn Tongchitpakdee, Wirote Youravong, Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration, Journal of Food Engineering 116 (2013) 554–561.

【4】Edward K. Summers, John H. Lienhard V, Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes, Desalination, 330 (2013) 100-111.

【5】M. Krivorot, A. Kushmaro, Y. Oren, Jack Gilron, Factors affecting biofilm formation and biofouling in membrane distillation of seawater, J. Membr. Sci. 376 (2011) 15–24.

【6】L. Vanysacker , P.Declerck , M.R.Bilad , I.F.J.Vankelecom, Biofouling on microfiltration membranes in MBRs:Role of membrane type and microbial community, J.Membr.Sci.,453 (2014) 394–401

【7】Sharmiza Adnan, Manh Hoang, Huanting Wang, Zongli Xie, Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination , 284 (2012) 297–308.
 
【8】J. Phattaranawik , R. Jiraratananon, A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212 (2003) 177–193.

【9】Surapit Srisurichan, Ratana Jiraratananon, A.G. Fane, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J.Membr. Sci., 277 (2006) 186–194.

【10】Chin Lee Ong , Majid Nabavi , Stephan Paredes , A.S.G. Khalil , Bruno Michel,
Dimos Poulikakos , An experimentally optimized model for heat and mass transfer in direct contact membrane distillation, International Journal of Heat and Mass Transfer , 66 (2013) 855–867.

【11】Jianhua Zhang, Noel Dow, Mikel Duke, Eddy Ostarcevic, Jun-De Li, Stephen Gray, Identification of material and physical features of membrane distillationmembranes for high performance desalination, J. Membr. Sci., 349 (2010) 295–303.

【12】Jason Woods, John Pellegrino , Jay Burch, Generalized guidance for considering pore-size distribution in membrane distillation, J.Membr. Sci., 368 (2011) 124–133.

【13】L. Mart’ınez-D’ıez, M.I. Vazquez-Gonzalez, A method to evaluate coefficients affecting flux in membrane distillation, J.Membr. Sci., 173 (2000) 225–234.

【14】A.G. Fane, R.W. Schofield, C.J.D. Fell, The efficient use of energy in membrane
distillation, Desalination 64 (1987) 231–243.


【15】F. Lagana, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling
and concentration experiments, J. Membr. Sci. 166 (1) (2000) 1–11.

【16】Y. Fujii, et al., Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic
fine porous membranes, J. Membr. Sci. 72 (1) (1992) 53–72.

【17】 Morten Busch Jensen, Knud Villy Christensen, Rene Andresen1, A model of direct contact membrane distillation for black currant juice, Journal of Food Engineering 107 (2011) 405–414

【18】 M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, second edition, Kluwer Academic Publishers, 1991.

【19】Jiubing Shen, Ziwen Xing, Xiaolin Wang, Zhilong He, Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors, Desalination , 333 (2014) 146–153

【20】Hsu-Hsien Chang , Chih-Hao Tsai, Hao-Cheng Wei and Liao-Ping Cheng, Effect of structure of PVDF membranes on the performance of membrane distillation, Membrane Water Treatment, 5 (2014) 1-000

【21】L. Mart’ınez , J.M. Rodr’ıguez-Maroto, Membrane thickness reduction effects on direct contact membrane distillation performance, J.Membr. Sci., 312 (2008) 143–156
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信