§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0103201815303200
DOI 10.6846/TKU.2018.00013
論文名稱(中文) 聚二氧乙基噻吩/聚苯乙烯磺酸摻混銦錫氧化物奈米複合導電薄膜與水凝膠特性之研究
論文名稱(英文) Characteristics of PEDOT:PSS / indium-tin oxide (ITO) nanocomposite conductive films and hydrogels
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 江坤翰
研究生(英文) Kun-Han Chiang
學號 605400216
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-19
論文頁數 87頁
口試委員 指導教授 - 張朝欽
委員 - 鄭廖平
委員 - 黃逢璽
關鍵字(中) 銦錫氧化物
共沉澱法
複合塗膜
片電阻
穿透率
電致色變
聚二氧乙基噻吩
流變性質
關鍵字(英) indium-tin oxide
co-precipitation
composite coating
sheet resistance
transmittance
electrochromism
PEDOT
rheological properties
第三語言關鍵字
學科別分類
中文摘要
本研究利用共沉澱法在室溫下製備銦錫氧化物奈米片條,經由高溫煆燒轉變成銦錫氧化物奈米片條(ITO)。形成的銦錫氧化物粉體分散在鹼性水溶液 (pH=12)中,加入導電高分子(PEDOT/PSS) 、改質劑乙二醇 (EG),以旋轉塗佈法塗佈於於玻璃基板上,經過熱硬化處理後,真空烘烤可得 PEDOT/PSS-ITO 透明導電塗膜。在此研究中探討ITO含量、溶劑選擇、溶液體積比、改質劑含量和塗膜方式對製作的塗膜片電阻和可見光平均穿透率的影響,在最佳條件下可得片電阻108 Ω/sq和穿透率87.8%的透明導電塗膜。再由PEDOT/PSS-ITO 透明導電塗膜具有的特性,無機粒子ITO可以吸收紫外光的性質,以不同ITO含量的透明導電塗膜做紫外光測試,測試是否此塗膜具有耐紫外光照射之能力;導電高分子PEDOT具有的較高著色效率,以不同配方、塗膜基材做電化學測試,測試是否此塗膜具有電致色變之效果。由ITO加入至PEDOT/PSS配置塗膜液的過程中,發現ITO會與PSS產生交聯,具有成膠的可能性,並測試流變性質。
英文摘要
Indium-tin hydroxide(ITH) nanostips were prepared by co-precipitation at room temperature and converted into indium-tin oxide(ITO) nanostrips after high-temperature calcination. The formed ITO powder was dispersed in an alkaline aqueous solution (pH12), and then mixed with a conductive polymer (PEDOT/PSS) and a modifier ethylene glycol (EG) to form coating pastes. The coating pastes were coated on glass substrates by using the spin coating method, and the resultant coatings were thermal cured. The effects of ITO content, solvent selection, solution volume ratio, modifier content and film-coating method on the sheet resistance and visible light transmittance of the formed coatings were studied. In the optimal case, a coating with sheet resistance of 108 Ω/sq and average visible transmittance of 87.8% could be prepared. Because ITO can absorb UV light, the transparent conductive coatings with different ITO contents were tested to see their UV resistibility. Conductive polymer PEDOT is known to be electrochromic. Coatings made with different formulations on different substrates were electrochemically tested to see whether the coatings possess electrochromic effect. During preparation of the coating solutions, it was found that ITO can form cross-links with PSS, to induce gelation of the solution. The rheological properties were the gels were tested.
第三語言摘要
論文目次
主目錄
致謝 I
論文提要內容 II
Abstract III
主目錄 IV
表目錄 V
圖目錄 VI
第一章 序論 1
第二章 文獻回顧 3
2-1 銦錫氧化物奈米粉體塗膜 3
2-2 銦錫氧化物與導電高分子塗膜 4
2-3 導電高分子組裝電致色變元件 7
2-4 導電高分子水凝膠 9
第三章 實驗部分 16
3-1 實驗藥品 16
3-2 實驗步驟19
3-3 實驗設備及儀器 23
第四章 結果與討論 27
4-1 導電高分子摻混銦錫氧化物複合薄膜 27
4-2 導電高分子摻混銦錫氧化物複合薄膜結構 31
4-3 浸塗法塗佈導電高分子摻混銦錫氧化物 35
第五章 結果與討論 36
5-1 導電高分子電致色變機制 36
5-2 PEDOT/PSS電致色變塗膜之性質探討 44
5-3 PEDOT/PSS-ITO電致色變塗膜之性質探討 51
第六章 結果與討論 55
6-1 銦錫氧化物與導電高分子複合水凝膠 55
第七章 結論 60
參考文獻 62
附錄 65

圖目錄
圖1-1  ITO穿透吸收和反射光譜圖 1
圖2-1  MSMA在ITO塗膜製作時的機制:(a)MSMA將ITO粒子減少距離;(b)MSMA和ITO水解縮合反應 3
圖2-2  PEDOT 結構圖 4
圖2-3  不同體積比 ITO與導電率關係圖 5
圖2-4  PEDOT-PSS層摻混不同體積比ITO (a)純PEDOT/PSS 
(b)5 vol%ITO (c) 12 vol%的ITO (d)17 vol%ITO 的AFM圖 5
圖2-5  0.6 wt% ITO在不同pH值ζ-potential圖 6
圖2-6  ITO-PEDOT/PSS不同體積比奈米複合材料在可見光下之 6
(a)穿透率和(b)吸收度 6
圖2-7  PEDOT/PSS-TiO2薄膜穩定性測試 8
圖2-8  不同含量的 PAAm 及 MBAAm 水凝膠離子導電度圖 9
圖2-9  不同反應溫度對應導電度圖 10
圖2-10  PEDOT/PSS水凝膠 AFM圖 (b) 地形圖 (c)相位圖 11
圖2-11  PAA水凝膠SEM截面圖(a) PAA DN hydrogel(b)PAA-PEDOT/PSS TN hydrogel 12
圖3-1  銦錫氧化物奈米片條製作步驟 21
圖3-2  PEDOT/PSS-ITO複合塗膜製作步驟 21
圖3-3  PEDOT/PSS-ITO複合水凝膠製作步驟 22
圖3-4  工作電極樣品製作(a) 塗佈於普通玻璃示意圖、(b)塗佈於ITO玻璃示意圖 25
圖3-5  實驗模擬之等效電路圖 26
圖4-1  PEDOT/PSS (PH1000)塗膜表面SEM圖:(a) 5k倍;(b) 50k倍	31
圖4-2  PEDOT/PSS-ITO(1 wt%)塗膜表面SEM圖:(a) 5k倍;(b) 50k倍 31
圖4-3  PEDOT/PSS-ITO(2 wt%)塗膜表面SEM圖:(a) 5k倍;(b) 50k倍 32
圖4-4  PEDOT/PSS-ITO(3 wt%)塗膜表面SEM圖:(a) 5k倍;(b) 50k倍 32
圖4-5  PEDOT/PSS-ITO(5 wt%)塗膜表面SEM圖:(a) 5k倍;(b) 50k倍 32
圖4-6  PEDOT/PSS-ITO 塗膜液黏度數值圖 34
圖5-1  PEDOT高分子摻雜示意圖 36
圖5-2  polaron和bipolaron能帶圖 36
圖5-3  Pito 塗膜之CV測試圖 38
圖5-4  Pito 塗膜穿透率對時間圖 39
圖5-5  PEDOT/PSS-ITO 塗膜之CV比較圖 39
圖5-6  PEDOT/PSS-ITO 塗膜之EIS測試 (0.3V) 40
圖5-7  PEDOT/PSS-ITO 塗膜之EIS測試 (-1.3V) 41
圖5-8  PEDOT/PSS-ITO 塗膜之階梯電位應答測試 43
圖5-9  PEDOT/PSS摻混不同EG量之塗膜CV比較圖 46
圖5-10  PEDOT/PSS-2 vol% EG不同烘烤溫度之塗膜CV比較圖	46
圖5-11  PEDOT/PSS-3 vol% EG不同烘烤溫度之塗膜CV比較圖	47
圖5-12  PEDOT/PSS摻混不同EG量之塗膜階梯電位圖 49
圖5-13  PEDOT/PSS-2 vol% EG不同烘烤溫度之塗膜階梯電位圖	49
圖5-14  PEDOT/PSS-3 vol% EG不同烘烤溫度之塗膜階梯電位圖	50
圖5-15  PEDOT/PSS-ITO glass 塗膜之CV比較圖 52
圖5-16  PEDOT/PSS-ITO 塗膜之階梯電位應答測試 53
圖6-1  PEDOT/PSS-0.5wt% ITO 水凝膠成膠時間 56
圖6-2  PEDOT/PSS 水溶液不同時間吸收度 57
圖6-3  PEDOT/PSS-1wt% ITO 水凝膠不同時間吸收度 57
圖6-4  PEDOT/PSS-ITO 水凝膠損失水量圖 58
圖A-1  ITO 在pH=2 ζ-potential圖 65
圖A-2  ITO 在pH=4.5 ζ-potential圖 65
圖A-3  ITO 在pH=12 ζ-potential圖 66
圖A-4  ITO奈米條片 TEM圖 66
圖C-1  PEDOT/PSS-ITO塗膜紫外光測試片電阻數值圖 72
圖D-1  Pito 塗膜之CV測試圖 73
圖D-2  Pito 塗膜穿透率對時間圖 73
圖D-3  PEito 塗膜之CV測試圖 74
圖D-4  PEito 塗膜穿透率對時間圖 74
圖D-5  PI5E2ito 塗膜之CV測試圖 75
圖D-6  PI5E2ito 塗膜穿透率對時間圖 75
圖D-7  Pglass(130) 塗膜之CV測試圖 76
圖D-8  PE1glass(130) 塗膜之CV測試圖 76
圖D-9  PE2glass(130) 塗膜之CV測試圖 77
圖D-10  PE3glass(130) 塗膜之CV測試圖 77
圖D-11  PE5glass(130) 塗膜之CV測試圖 78
圖D-12  PE2glass(110) 塗膜之CV測試圖 78
圖D-13  PE2glass(150) 塗膜之CV測試圖 79
圖D-14  PE3glass(20) 塗膜之CV測試圖 79
圖D-15  PE3glass(80) 塗膜之CV測試圖 80
圖D-16  PE3glass(90) 塗膜之CV測試圖 80
圖D-17  PE3glass(130) 塗膜之CV測試圖 81
圖D-18  PE3PMMA(80) 塗膜之CV測試圖 81
圖D-19  PI5glass 塗膜之CV測試圖 82
圖D-20  PI5E2glass 塗膜之CV測試圖 82
圖D-21  PI5E2glass 塗膜穿透率對時間圖 83
圖E-1  PEDOT/PSS-1wt%ITO 水凝膠成膠時間 84
圖E-2  PEDOT/PSS-3wt%ITO 水凝膠成膠時間 84
圖E-3  PEDOT/PSS-5wt%ITO 水凝膠成膠時間 85
圖E-4  PEDOT/PSS-10wt%ITO 水凝膠成膠時間 85
圖E-5  奈米粒子複合水凝膠黏度圖 86
圖E-6  PEDOT/PSS-1 wt%SiO2 溶液黏彈性分析 87
圖E-7  PEDOT/PSS-5 wt% SiO2 溶液黏彈性分析 87

表目錄 
表2-1  PEDOT/PSS水凝膠導電率表 11
表2-2  PAAm-PEDOT/PSS水凝膠導電率表 13
表4-1  不同體積比選擇比較表 28
表4-2  不同濃度選擇比較表	28
表4-3  固含量比例數據表 29
表4-4  PEDOT/PSS-1 wt% ITO 塗膜液攪拌時間之塗膜數值表	30
表4-5  PEDOT/PSS-ITO塗膜數值表 34
表4-6  PEDOT/PSS-ITO 浸鍍塗膜數值表 35
表5-1  PEDOT/PSS在ITO玻璃之塗膜配方及性質表 38
表5-2  PEDOT/PSS-ITO 塗膜之EIS擬和結果表 41
表5-3  PEDOT/PSS-ITO 塗膜電致色變性質比較表 43
表5-4  PEDOT/PSS改質塗膜濃度配方表(1) 45
表5-5  PEDOT/PSS改質塗膜溫度配方表(2) 45
表5-6  PEDOT/PSS改質塗膜溫度配方表(3) 45
表5-7  PEDOT/PSS改質塗膜電致色變性質著色效率比較 50
表5-8  PEDOT/PSS-ITO 塗膜配方表 51
表5-9  PEDOT/PSS-ITO 塗膜電致色變性質比較表 54
表6-1  PEDOT/PSS-ITO 水凝膠配方表 56
表6-2  PEDOT/PSS-ITO 水凝膠含水量表 58
表6-3  PEDOT/PSS-ITO 水凝膠片電阻表 59
參考文獻
[1]	洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾,「ITO透明導電薄膜:從發展與應用到製備與分析」,中國化學會季刊 63,409~418頁,2005年

[2]	S. Tang, J. Yao, J. Chen, J. Luo, Preparation of indium tin oxide (ITO) with a single-phase structure, Journal of Materials Processing Technology 137, 82-85 (2003)

[3]	N. Pramanik, S. Das, P. Biswas, The effect of Sn(IV) on transformation of co-precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide (ITO) powder, Materials Letters 56, 671-679 (2002)

[4]	B. Kim, S. Kim, J. Lee, J. Kim, Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders, Journal of the American Ceramic Society 85, 2083-8088 (2008)

[5]	M.A. Aegerter, N. Al-Dahoudi, Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates, J. Sol–Gel Sci. Technol. 26 (2003) 693-697.

[6]	J. Puetz, M.A. Aegerter, Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils, Thin Solid Films 516 (2008) 4495-4501.

[7]	S. Heusing, P.W. de Oliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes, Thin Solid Films 518 (2009) 1164-1169.

[8]	A. Solieman, A.H. Moharram, M.A. Aegerter, Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing, Appl. Surf. Sci. 256 (2010) 1925-1929.

[9]	I. Maksimenko, M. Gross, T. Königer, H. Münstedt, P.J.Wellmann, Conductivity and adhesion enhancement in low-temperature processed indium tin oxide/polymer nanocomposites, Thin Solid Films 518 (2010) 2910-2915.

[10]	I. Maksimenko, P. Wellmann, Low temperature processing of hybrid nanoparticulate indium tin oxide (ITO) polymer layers and application in large scale lighting devices, Thin Solid Films 519 (2011) 5744-5747.

[11]	N. Wolf, M. Rydzek, D. Gerstenlauer, M. Arduini-Schuster, J. Manara, Low temperature processing of redispersed tin doped indium oxide nanoparticle coatings, Thin Solid Films 532 (2013) 60–65.

[12]	王彥智,「銦錫氧化物奈米片條高穿透導電塗膜」,碩士論文,淡江大學化學工程與材料工程學系,2012年

[13]	張家瑋,「銦錫氧化物奈米片條透明導電塗膜製程改善」,碩士論文,淡江大學化學工程與材料工程學系,2014年

[14]	鄭宗麟,「使用以靜電力場輔助電鍍法製備具微米構形聚二氧乙基噻吩-鉑複合薄膜光電致色變元件之製作與性質分析」,碩士論文,淡江大學化學工程與材料工程學系,2017年

[15]	陳至穎,「以聚羥甲基 3,4-二氧乙基噻吩摻混碳黑複合薄膜組裝固態光電致色變元件及其特性分析」,碩士論文,淡江大學化學工程與材料工程學系,2017年

[16]	A. Reindl, M. Mahajeri, J. Hanft, W. Peukert, The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films, ThinSolid Films 517, 1624-1629(2009)

[17]	M. Łapkowski, A. Pron, “Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) – “in situ” conductivity and spectroscopic investigations”, Synthetic Metals. Vol.110, pp.79-83, 2000.

[18]	J. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar, “On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment”, Polymer. Vol.45, pp. 8443-8450, 2004

[19]	N. Mechau, R. Groeger, A. Prodi-Schwab, and R. Schmechel, Reduced conductivity in poly(3,4-ethylenedioxythiophen)-poly(styrene sulfonate) and indium tin oxide nanocomposite for low indium tin oxide content,J. Appl. Phys. 105, 054318 (2009).

[20]	I. Maksimenko,D. Kilian,C. Mehringer , et al. Fabrication, charge carrier transport and application of printable nanocomposites based on indium tin oxide nanoparticles and conducting polymer 3,4-ethylendioxytiophene/ polystyrene sulfonic acid. J. Appl. Phys. (2011);110:104 301– 104308.

[21]	Y. Li, J. Hagen, D. Haarer. Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell. Synthetic Metals, 94 (1998) 273-277.

[22]	J.Y. Liao, K.C. Ho, J. A photoelectrochromic device using a PEDOT thin films. New Mater. Electrochem. Syst., 8 (2005) 37-47.

[23]	T.Y. Chiang, M. C. Huang, C. H. Tsai. The reversibility of ionic transport in PEDOT with application to acomplementary electrochromic device. Applied Surface Science.  (2014) 293-300

[24]	T.Y. Chiang, M. C. Huang, C. H. Tsai. The effects of solvent on the electrochromic properties of poly(3,4-ethylenedioxythiophene). RSC Adv., 2014, 4, 21201

[25]	Y. Gu, W. Hong, W. Choi, J. Y. Park, K. B. Kim, N. Lee,and Y. Seo. Electrochromic Device Containing Heptyl Viologen, PEDOT,TiO2 and TEMPO. Journal of The Electrochemical Society, 161.12 (2014) H716-H721
 
[26]	J. Lu , H. Song , S. Li , L. Wang , L. Han, H. Ling , X. Lu. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application. Thin Solid Films 584 (2015) 353–358

[27]	F.A. Aouada ,M.R. Guilherme ,G.M. Campese ,E.M. Girotto ,A.F. Rubira ,E.C. Muniz, Electrochemical and mechanical properties of hydrogels based on conductive poly(3,4-ethylene dioxythiophene)/poly(styrenesulfonate) and PAAm. Polym Test 2006;25:158.

[28]	Q.W Tang, J.M. Lin, J.H. Wu, C.J. Zhang,S.C. Hao. Two-steps synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure. Carbohydrate Polymers, 67, (2007) 332–336

[29]	T.Y.Dai ,X.J. Jiang ,S.H. Hua ,X.S. Wang ,Y. Lu. Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly. Chem Commun 2008:4279.

[30]	T.Y. Dai ,Z. Shi ,C. Shen,J. Wang ,Y.Lu . Self-strengthened conducting polymer hydrogels. Synth. Met. 2010, 160 (9−10), 1101−1106

[31]	T.Y. Dai ,X.T. Qing ,Y. Lu, Y.Y. Xia, Conducting hydrogels with enhanced mechanical strength. Polymer 50 (2009) 5236.

[32]	T.Y. Dai ,X.T. Qing ,H. Zhou ,C. Shen ,J. Wang ,Y. Lu . Mechanically strong conducting hydrogels with special double-network structure. Synth. Met. 2010, 160 (7−8), 791−796.

[33]	H. Warren ,M. Panhuis . Highly conducting composite hydrogels from gellan gum, PEDOT:PSS and carbon nanofibres. Synth. Met. 2015, 206, 61-65.

[34]	Y.S. Kim ,K. Cho ,H.J. Lee ,S. Chang ,H. Lee ,J.H. Kim ,W.G. Koh . Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. React. Funct. Polym.,109(2016), pp.15-22

[35]	C. Teng ,X. Lu ,G. Ren ,Y. Zhu ,M. Wan ,L. Jiang, Underwater Self-Cleaning PEDOT-PSS Hydrogel Mesh for Effective Separation of Corrosive and Hot Oil/Water Mixtures. Adv. Mater. Interfaces, 2014,1, 1400099.

[36]	J. Roncali, R. Garreau, A. Yassar, P. Marque, F. Garnier, and M. Lemaire, "Effects of steric factors on the electrosynthesis and properties of conducting poly (3-alkylthiophenes)," Journal of Physical Chemistry, vol. 91, pp. 6706-6714, 1987.

[37]	T.S. Tung ,K.C. Ho . "Cycling and at-rest stabilities of a complementary electrochromic device containing poly (3, 4-ethylenedioxythiophene) and Prussian blue," Solar energy materials and solar cells, vol. 90, pp. 521-537, 2006.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信