§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0102202110100400
DOI 10.6846/TKU.2021.00002
論文名稱(中文) 疏水膜與疏水氫氧化銅塗層網過濾結合氣泡萃取去除銅的研究
論文名稱(英文) Integration of hydrophobic membrane or superhydrophobic copper hydroxide coated mesh filtration with compressed air-assisted solvent extraction for copper removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 1
出版年 110
研究生(中文) 謝屹宸
研究生(英文) YiChen Xie
學號 607484028
學位類別 碩士
語言別 英文
第二語言別
口試日期 2021-01-08
論文頁數 58頁
口試委員 指導教授 - 李奇旺
委員 - 劉志成
委員 - 彭晴玉
關鍵字(中) 薄膜
疏水
過濾
氣泡萃取
D2EHPA
煤油
水力停留時間
關鍵字(英) Membrane
Hydrophobic
Filter
Compressed air-assisted solventextraction (CASX)
D2EHPA
Kerosene
Hydraulic retention time (HRT)
第三語言關鍵字
學科別分類
中文摘要
本研究探討疏水膜與疏水氫氧化銅塗層網過濾結合氣泡萃取去除含銅廢水。實驗中用到兩種薄膜過濾方式和一套疏水氫氧化銅塗層網系統。對於薄膜系統,首先探討pH以及D2EHPA劑量對去除銅和化學需氧量的影響,隨後探討氣泡萃取系統釋放壓力對去除銅和化學需氧量的影響,最後探討D2EHPA與煤油比例對去除銅和化學需氧量的影響。結果顯示,濃度為每升5毫摩爾的銅溶液在pH值為5以及D2EHPA劑量為1.61克和釋放壓力為0.3 MPa,D2EHPA/煤油的比例為1: 10的條件下,利用薄膜過濾系統後,銅的去除效率能達到98%,但是化學需氧量的去除效率只有60%,且薄膜堵塞的情況嚴重。
對於疏水氫氧化銅塗層網系統,首先探討水力停留時間對去除化學需氧量的影響,隨後探討萃取劑/水的比例對去除化學需氧量的影響,最後討論D2EHPA/煤油比例對去除銅和化學需氧量的影響。結果顯示,濃度為每升5毫摩爾的銅溶液,在pH值為5以及D2EHPA劑量為1.61克和釋放壓力為0.3 MPa,D2EHPA/煤油的比例為1: 10,水力停留時間為1分鐘的條件下,利用疏水氫氧化銅塗層網系統過濾後,銅的去除效率能達到98%。並且COD的去除效率優於薄膜系統,可以保持在80%-85%,且沒有堵塞的情況產生。
英文摘要
Integration of hydrophobic membrane or superhydrophobic copper hydroxide coated mesh filtration with a compressed air-assisted solvent extraction system was employed for copper removal. Two sets of membrane systems, namely, cross-flow system and dead-end system, and one set of hydrophobic copper hydroxide coated mesh system were used in the experiment. For the membrane system, the effects of pH and D2EHPA dosage on copper removal and COD removal were discussed first. Then the effects of the compression pressure of the compressed air-assisted solvent extraction system on copper removal and COD removal were discussed. The effects of different ratios of D2EHPA and kerosene on copper removal and COD removal were discussed at the end. The copper concentration in the wastewater used in the experiment is 5 mM. The best experimental condition is pH 5, D2EHPA dosage of 1.61 g, compression pressure of 0.3 MPa, and D2EHPA/kerosene ratio of 1:10. With the integration of the membrane system, the removal rate of copper can reach 98%, but the removal rate of COD is only 60%, and membrane fouling is serious.
For the hydrophobic copper hydroxide coated mesh system, the effects of hydraulic retention time on COD removal were discussed first. Then the effects of different extractant/water ratios on COD removal were discussed. The effects of different D2EHPA/kerosene ratios on copper removal and COD removal were discussed at the end.
The results showed that for the copper solution with a concentration of 5 mM under the conditions of pH 5, a D2EHPA dose of 1.61 g, a compression pressure of 0.3 MPa, a D2EHPA/kerosene ratio of 1:10, and a hydraulic retention time of 1 minute, the copper removal efficiency can reach 98% with the integration of the superhydrophobic copper hydroxide coated mesh system. The removal of copper in membrane system and superhydrophobic copper hydroxide coated mesh system are almost the same, but the superhydrophobic copper hydroxide coated mesh system has a better COD removal, The COD removal rate maintained at 80%-85% for a long operation time of 12 hrs, and there is no clogging.
第三語言摘要
論文目次
CONTENTS
Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Literature reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Metal extraction with D2EHPA . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Compressed air-assisted solvent extraction for metal removal . . . . . . 6
2.3 Membrane for solvent/water separation . . . . . . . . . . . . . . . . . . 8
2.4 hydrophilic and hydrophobic materials for solvent/water separation . . 11
2.5 Membrane Fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 CASX system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Cross-
ow and dead-end membrane system . . . . . . . . . . . . 19
3.2.3 Superhydrophobic copper hydroxide coated mesh . . . . . . . . 21
3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Membrane system . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 SCM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Selection of the optional conditions for CASX . . . . . . . . . . . . . . 28
4.2 Membrane system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Effects of CASX compression pressure on Cu removal . . . . . . 34
4.2.2 Effects of carrier/kerosene ratio . . . . . . . . . . . . . . . . . . 37
4.3 SCM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Effects of HRT on the oil/water separation . . . . . . . . . . . . 43
4.3.2 Effects of extractant/water ratio . . . . . . . . . . . . . . . . . . 46
4.3.3 Effects of carrier/diluent ratio . . . . . . . . . . . . . . . . . . . 47
4.3.4 Optimization of experimental conditions for efficient Cu removal 49
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

LIST OF TABLES
2.1 Degreasing separation materials with hydrophobic and hydrophilic properties manufactured by different methods . . . . . . . . . . . . . . . . . 14

LIST OF FIGURES
2.1 Chemical structure of D2EHPA . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distribution of extractant in organic and aqueous phase [24]. . . . . . . 5
2.3 Micro-sized solvent-coated air bubbles (MSAB) for metal extraction generated under various pressure (left:100 kPa, middle:200 kPa, and right:300 kPa). (a) right after samples prepared, (b) 30 min, and (c) 5h after solvent prepared [4]. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Schematic representing basic principles involved in membrane separation[29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Schematic of the cross-flow experimental setup [31]. . . . . . . . . . . . 10
2.6 A simple demonstration of oil/water separation for a hydrophilic mesh[34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 The prepared coating mesh fi lm shows special wettability, with both super-hydrophobic and super-oleophilic characteristics [18]. . . . . . . . 13
2.8 A model device for the separation of hydrophobic solvents and water,
a mixture of solvents and water is added at a rate of one droplet persecond [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Membrane fouling mechanisms [6]. . . . . . . . . . . . . . . . . . . . . . 16
3.1 Schematic diagram of the compressed air-assisted solvent-coated extraction system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Schematic diagram of the cross flow membrane  filtration system . . . . . 20
3.3 Schematic diagram of the dead-end  filtration system . . . . . . . . . . . 21
3.4 Schematic diagram of SCM system . . . . . . . . . . . . . . . . . . . . 23
4.1 The relationship between different pH values and D2EHPA dosage on
COD removal rate (0.45 μm fi lter). Experimental conditions: Compression pressure of 0.3 MPa and the ratio of D2EHPA/kerosene of 1:10. . . 29
4.2 The relationship between different pH values and D2EHPA dosage on COD removal rate (0.22 μm fi lter). Experimental conditions: Compression pressure of 0.3 MPa and the ratio of D2EHPA/kerosene of 1:10. . . 30
4.3 0.45 and 0.22 μm  filter results for the D2EHPA/Cu (II) molar ratio of 4. 31
4.4 The relationship between different pH values and D2EHPA dosage on Cu removal rate (0.45 μm  lter). Experimental conditions: Compression pressure of 0.3 MPa and the ratio of D2EHPA/kerosene of 1:10. . . . . 32
4.5 The relationship between different pH values and D2EHPA dosage on Cu removal rate (0.22 μm  lter). Experimental conditions: Compression pressure of 0.3 MPa and the ratio of D2EHPA/kerosene of 1:10. . . . . 33
4.6 Membrane flux as a function of released pressure. Experimental conditions: D2EHPA dosage of 1.61 g, the ratio of D2EHPA:Kerosene of 1:10 and pH of 5 (cross-flow system). . . . . . . . . . . . . . . . . . . . . . . 35
4.7 The relationship between time and pressure (cross-flow system). . . . . 36
4.8 Cu removal as a function of released pressure. Experimental conditions: D2EHPA dosage of 1.61 g, the ratio of D2EHPA:kerosene of 1:10 and pH is 5 (cross-flow system). . . . . . . . . . . . . . . . . . . . . . . . . 37
4.9 COD removal as a function of released pressure. Experimental conditions: D2EHPA dosage of 1.61 g, the ratio of D2EHPA:Kerosene of 1:10 and pH of 5 (cross-flow system). . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Membrane flux as a function of D2EHPA/kerosene ratio. Experimental
conditions: D2EHPA dosage of 1.61 g, the compression pressure of 0.3 MPa, pH of 5 and the TMP of the membrane system of 0.1 MPa. . . . 39
4.11 Membrane resistance as a function of D2EHPA/kerosene ratio. Experimental conditions:D2EHPA dosage of 1.61 g, the compression pressure of 0.3 MPa, pH of 5 and the TMP of the membrane system of 0.1 MPa. 40
4.12 Cu removal as a function of D2EHPA/kerosene ratio. Experimental conditions: D2EHPA dosage of 1.61 g, the compression pressure of 0.3 MPa, pH of 5 and the TMP of the membrane system of 0.1 MPa. . . . 41
4.13 COD removal as a function of D2EHPA/kerosene ratio. Experimental conditions: D2EHPA dosage of 1.61 g, the compression pressure of 0.3 MPa, pH of 5 and the TMP of the membrane system of 0.1 MPa. . . . 42
4.14 COD removal e ciency as a function of time by gravity separation . . . 43
4.15 Extended test of SCM for di erent HRT. Experimental conditions: The ratio of kerosene/DI water of 1:100. . . . . . . . . . . . . . . . . . . . . 44
4.16 Extended test of SCM for the separation of extractant/water. Experimental conditions: HRT of 1 min, the ratio of D2EHPA/kerosene of 1:10 and the ratio of extractant/DI water of 1:100. . . . . . . . . . . . . 45
4.17 Pressure profile v.s. number of bed volume for a long-term SCM test.
Experimental conditions: HRT of 1 min, the ratio of D2EHPA/kerosene of 1:10 and the ratio of extractant/DI water of 1:100. . . . . . . . . . . 46
4.18 COD removal as a function of extractant/water ratio. Experimental conditions: HRT of 1 min, the ratio of D2EHPA: kerosene of 1:10 and the compression pressure of 0.3 MPa. . . . . . . . . . . . . . . . . . . . 47
4.19 COD removal as a function of carrier/kerosene ratio. Experimental conditions: HRT of 1 min, compression pressure of 0.3 MPa and the extractant/water ratio of 1:150. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.20 Test of SCM for removal copper. Experimental conditions: pH of 5, HRT of 1 min, D2EHPA dosage of 1.61 g, the ratio of D2EHPA: kerosene of 1:10 and compression pressure of 0.3 MPa. . . . . . . . . . . . . . . . . 50
參考文獻
[1]    T. Wang, Q. Wang, H. Soklun, G. Qu, T. Xia, X. Guo, H. Jia, and L. Zhu, (2019)“A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precip-itation  from  water  by  bicarbonate-activated  hydrogen  peroxide/chemical  precipi-tation”Chemical Engineering Journal370: 1298–1309.doi:10.1016/j.cej.2019.04.005.
[2]    M. Hunsom, K. Pruksathorn, S. Damronglerd, H. Vergnes, and P. Duverneuil,(2005)“Electrochemical  treatment  of  heavy  metals  (Cu2+,Cr6+,Ni2+)  fromindustrial effluent and modeling of copper reduction”Water Research39(4):610–616.doi:10.1016/j.watres.2004.10.011.
[3]    P. C. Siu, L. F. Koong, J. Saleem, J. Barford, and G. McKay, (2016)“Equilibriumand kinetics of copper ions removal from wastewater by ion exchange”ChineseJournal of Chemical Engineering24(1): 94–100.doi:10.1016/j.cjche.2015.06.017.
[4]    C. W. Li, Y. M. Chen, and S. T. Hsiao, (2008)“Compressed air-assisted solventextraction  (CASX)  for  metal  removal”Chemosphere71(1): 51–58.doi:10.1016/j.chemosphere.2007.10.050.
[5]    K.  Gaaseidnes  and  J.  Turbeville,  (2007)“Separation  of  Oil  and  Water  in  OilSpill  Recovery  Operations”Pure  and  Applied  Chemistry71(1):  95–101.doi:10.1351/pac199971010095.
[6]    B. Tansel and J. Regula, (2000)“Coagulation enhanced centrifugation for treat-ment of petroleum hydrocarbon contaminated waters”Journal of Environmen-tal Science and Health - Part A Toxic/Hazardous Substances and Envi-ronmental Engineering35(9): 1557–1575.doi:10.1080/10934520009377055.
[7]    A. B. Nordvik, J. L. Simmons, K. R. Bitting, A. Lewis, and T. Strøm-Kristiansen,(1996)“Oil  and  water separation  in  marine  oil  spill clean-up  operations”SpillScience  and  Technology  Bulletin3(3):  107–122.doi:10.1016/S1353-2561(96)00021-7.
[8]    H. J. Tanudjaja, C. A. Hejase, V. V. Tarabara, A. G. Fane, and J. W. Chew,(2019)“Membrane-based separation for oily wastewater: A practical perspective”Water Research156: 347–365.doi:10.1016/j.watres.2019.03.021.
[9]    M. H. Zhou and W. J. Cho, (2001)“High oil-absorptive composites based on 4-tert-butylstyrene-EPDM-divinylbenzene graft polymer”Polymer International50(11): 1193–1200.doi:10.1002/pi.762.
[10]    A. A. Shokri, S. E. Zamani, and N. P. Company, (2010)“Water Purification byMembranes:  The  Role  of  Polymer  Science”Polymer Physics48: 1685–1718.doi:10.1002/polb.
[11]    M. Cheryan and N. Rajagopalan, (1998)“Membrane processing of oily streams.Wastewater  treatment  and  waste  reduction”Journal of Membrane Science151(1): 13–28.doi:10.1016/S0376-7388(98)00190-2.
[12]    P. Taylor and K. K. Sirkar, (2007)“Membrane  Separation  Technologies  :  Cur-rent Developments”Chemical Engineering Communications157: 145–184.doi:10.1080/00986449708936687.
[13]    C. W. Li, C. H. Chiu, Y. C. Lee, C. H. Chang, Y. H. Lee, and Y. M. Chen, (2010)“Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX)  for  metal  recovery”Water Science and Technology62(6): 1274–1280.doi:10.2166/wst.2010.851.
[14]    B. Hu and K. Scott, (2007)“Influence  of  membrane  material  and  corrugationand  process  conditions  on  emulsion  microfiltration”Journal  of  MembraneScience294(1-2): 30–39.doi:10.1016/j.memsci.2007.02.002.
[15]    M. Kukizaki and M. Goto, (2008)“Demulsification of water-in-oil emulsions bypermeation through Shirasu-porous-glass (SPG) membranes”Journal of Mem-brane Science322(1): 196–203.doi:10.1016/j.memsci.2008.05.029.[16]    M. Hlavacek, (1995)“Break-up of oil-in-water emulsions induced by permeationthrough a microfiltration membrane”Journal of Membrane Science102(C):1–7.doi:10.1016/0376-7388(94)00192-2.
[17]    S. Hoffmann and W. Nitsch, (2001)“Membrane coalescence for phase separationof  oil-in-water  emulsions  stabilized  by  surfactants  and  dispersed  into  smallestdroplets”Chemical  Engineering  and  Technology24(1):  22–27.doi:10.1002/1521-4125(200101)24:1<22::AID-CEAT22>3.0.CO;2-I.
[18]    L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, and D. Zhu, (2004)“A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil andwater”Angewandte Chemie - International Edition43(15): 2012–2014.doi:10.1002/anie.200353381.
[19]    A. Maartens, E. P. Jacobs, and P. Swart, (2002)“UF of pulp and paper effluent:Membrane  fouling-prevention  and  cleaning”Journal of Membrane Science209(1): 81–92.doi:10.1016/S0376-7388(02)00266-1.[20]    D. Sun, X. Duan, W. Li, and D. Zhou, (1998)“Demulsification  of  water-in-oilemulsion  by  using  porous  glass  membrane”Journal  of  Membrane  Science146(1): 65–72.doi:10.1016/S0376-7388(98)00096-9.[21]    D. Tian, X. Zhang, X. Wang, J. Zhai, and L. Jiang, (2011)“Micro/nanoscalehierarchical  structured  ZnO  mesh  film  for  separation  of  water  and  oil”Phys-ical  Chemistry  Chemical  Physics13(32):  14606–14610.doi:10 . 1039 /c1cp20671k.
[22]    X. Yin, Z. Wang, Y. Shen, P. Mu, G. Zhu, and J. Li, (2020)“Facile fabrication ofsuperhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil  emulsions”Separation  and  Purification  Technology230:  115856.doi:10.1016/j.seppur.2019.115856.
[23]    D. Zhang, L. Li, Y. Wu, W. Sun, J. Wang, and H. Sun, (2018)“One-step methodfor fabrication of superhydrophobic and superoleophilic surface for water-oil sepa-ration”Colloids and Surfaces A: Physicochemical and Engineering As-pects552: 32–38.doi:10.1016/j.colsurfa.2018.05.006.
[24]    P. C. Lee, C. W. Li, J. Y. Chen, Y. S. Li, and S. S. Chen, (2011)“Dissolution ofD2EHPA  in  liquid-liquid  extraction  process:  Implication  on  metal  removal  andorganic content of the treated water”Water Research45(18): 5953–5958.doi:10.1016/j.watres.2011.08.054.
[25]    R. S. Juang and Y. T. Chang, (1993)“Kinetics and Mechanism for Copper(II)Extraction from Sulfate Solutions with Bis(2-ethylhexyl)phosphoric Acid”Indus-trial and Engineering Chemistry Research32(1): 207–213.doi:10.1021/ie00013a027.
[26]    D.  D.  Pereira,  S.  D.  F.  Rocha,  and  M.  B.  Mansur,  (2007)“Recovery  of  zincsulphate from industrial effluents by liquid-liquid extraction using D2EHPA (di-2-ethylhexyl phosphoric acid)”Separation and Purification Technology53(1):89–96.doi:10.1016/j.seppur.2006.06.013.
[27]    V. Singh, M. K. Purkait, and C. Das, (2011)“Cross-Flow microfiltration of indus-trial  oily  wastewater:  Experimental  and  theoretical  consideration”SeparationScience and Technology46(8): 1213–1223.doi:10.1080/01496395.2011.560917.
[28]    S. R. H. Abadi, M. R. Sebzari, M. Hemati, F. Rekabdar, and T. Mohammadi,(2011)“Ceramic  membrane  performance  in  microfiltration  of  oily  wastewater”Desalination265(1-3): 222–228.doi:10.1016/j.desal.2010.07.055.
[29]    M. Padaki, R. Surya Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A.Kassim, N. Hilal, and A. F. Ismail, (2015)“Membrane technology enhancementin oil-water separation. A review”Desalination357: 197–207.doi:10.1016/j.desal.2014.11.023.
[30]    Y. He and Z. W. Jiang, (2008)“Technology review: Treating oilfield wastewater”Filtration  and  Separation45(5):  14–16.doi:10.1016/S0015- 1882(08)70174-5.
[31]    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, (2010)“Cross-flow ultrafil-tration of stable oil-in-water emulsion using polysulfone membranes”ChemicalEngineering Journal165(2): 447–456.doi:10.1016/j.cej.2010.09.031.
[32]    X. Zhu, W. Tu, K. H. Wee, and R. Bai, (2014)“Effective and low fouling oil/waterseparation by a novel hollow fiber membrane with both hydrophilic and oleophobicsurface  properties”Journal  of  Membrane  Science466:  36–44.doi:10.1016/j.memsci.2014.04.038.
[33]    L. Wang, K. Pan, L. Li, and B. Cao, (2014)“Surface hydrophilicity and structureof hydrophilic modified PVDF membrane by nonsolvent induced phase separationand  their  effect  on  oil/water  separation  performance”Industrial  and  Engi-neering Chemistry Research53(15): 6401–6408.doi:10.1021/ie4042388.
[34]    Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, (2014)“Special wettable materialsfor  oil/water  separation”Journal  of  Materials  Chemistry  A2(8):  2445–2460.doi:10.1039/c3ta13397d.
[35]    Q.  Pan,  M.  Wang,  and  H.  Wang,  (2008)“Separating  small  amount  of  waterand  hydrophobic  solvents  by  novel  superhydrophobic  copper  meshes”AppliedSurface Science254(18): 6002–6006.doi:10.1016/j.apsusc.2008.03.034.
[36]    D. D. La, T. A. Nguyen, S. Lee, J. W. Kim, and Y. S. Kim, (2011)“A stable su-perhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanonee-dle arrays”Applied Surface Science257(13): 5705–5710.doi:10.1016/j.apsusc.2011.01.078.
[37]    C. Wang, T. Yao, J. Wu, C. Ma, Z. Fan, Z. Wang, Y. Cheng, Q. Lin, and B. Yang,(2009)“Facile approach in fabricating superhydrophobic and superoleophilic sur-face for water and oil mixture separation”ACS Applied Materials and In-terfaces1(11): 2613–2617.doi:10.1021/am900520z.
[38]    Q. Li and M. Elimelech, (2004)“Organic fouling and chemical cleaning of nanofil-tration membranes: Measurements and mechanisms”Environmental Scienceand Technology38(17): 4683–4693.doi:10.1021/es0354162.
[39]    W.  Guo,  H.  H.  Ngo,  and  J.  Li,  (2012)“A  mini-review  on  membrane  fouling”Bioresource Technology122: 27–34.doi:10.1016/j.biortech.2012.04.089.
[40]    R. Zhang, S. Yu, W. Shi, J. Tian, L. Jin, B. Zhang, L. Li, and Z. Zhang, (2016)“Optimization of a membrane cleaning strategy for advanced treatment of polymerflooding produced water by nanofiltration”RSC Advances6(34): 28844–28853.doi:10.1039/c6ra01832g.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信