§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0102201011002100
DOI 10.6846/TKU.2010.00001
論文名稱(中文) 微波電漿輔助化學汽相沈積法合成鑽石膜 機制探討及場發射特性之研究
論文名稱(英文) Growth behavior and field emission characteristics of the diamond films synthesized by microwave plasma enhanced chemical vapor deposition method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系博士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 1
出版年 99
研究生(中文) 王全盛
研究生(英文) Chuan-Sheng Wang
學號 891180027
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2010-01-14
論文頁數 170頁
口試委員 指導教授 - 林諭男(inanlin@mail.tku.edu.tw)
指導教授 - 林諭男
委員 - 林諭男(inanlin@mail.tku.edu.tw)
委員 - 彭維鋒(wfpong@mail.tku.edu.tw)
委員 - 錢凡之(049039@mail.tku.edu.tw)
委員 - 張 立(lichang@cc.nctu.edu.tw)
委員 - 鄭秀鳳(hfcheng@phy03.phy.ntnu.edu.tw)
關鍵字(中) 電子場發射特性
成長機制
穿透式電子顯微鏡
關鍵字(英) electron field emission properties
growth mechanism
第三語言關鍵字
學科別分類
中文摘要
本論文研究以微波電漿輔助化學氣相沈積法(MPECVD),在甲烷/氬氣電漿中加入氫氣(甲烷/氬/氫=1/99-X/X)成長鑽石薄膜,結合穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)及即時電漿放射光譜(OES),對鑽石薄膜特性及成長機制深入研究。第二部分,我們採取一種修改的成長薄膜方式,在矽(Si)基板成長UNCD作為核層來代替偏壓輔助成核過程,再以甲烷/氫氣電漿於UNCD核層上成長微米鑽石薄膜(MCD/UNCD/Si),由於其異於一般的電子場發射特性,因此我們設計了一個實驗以試圖找出其原因。
研究中發現,我們對於在甲烷/氬氣電漿中加入氫氣,即使氫氣含量為0.1%也會使薄膜樣品上鑽石晶粒由圓形改變為片狀結構,並由OES顯示,微結構的形成,是經由鑽石表面碳氫化合物的黏附與侵蝕之間的競爭所造成的結果,而造成此差異的原因則是視腔體中氫氣電漿的活性決定,而氫氣電漿侵蝕鑽石表面碳氫化合物的想法,在第二部分以甲烷/氫氣電漿於UNCD核層上成長微米鑽石薄膜的方式中,此機制也扮演主要的角色,以致能造成如此特殊的成長方式及異於一般的場發射特性,相信由於這個機制的瞭解,將可以引導出更多的變化及鑽石薄膜特性的進步。
英文摘要
The modification on microstructure of diamond films due to the incorporation of H2 species into the Ar/CH4 ((CH4/Ar/ H2=1/99-X/X)) plasma was systematically investigated. How the characteristics of plasma modified the microstructure and the electron field emission properties of the diamond films were investigated using transmission electron microscopy. The possible mechanism for the modification of microstructure was discussed.
Micron-crystalline diamond (MCD) films with a unique microstructure were synthesized using a modified nucleation & growth process, in which a thin layer of ultrananocrystalline diamond (UNCD) was used as nucleation layer for growing diamond films in H2-plasma. This modified nucleation and growth process was adopted so as to improve the electron field emission (EFE) properties of diamonds films.
From study imply clearly that the transition in microstructure has already been initiated when only 0.1% H2 was incorporated into Ar-plasma. Large spherical clusters (plate grains), around 30 nm in size, were observed for UNCD01 films different from equi-axed geometry for D0 samples (UNCD). Optical emission spectroscopies indicated that addition of H2-species in the Ar/CH4 plasma lead to the decrease in CH-species and increase in atomic hydrogen species. The H2 containing plasma can partially etch away the hydrocarbons (trans-polyacetylene) adhered onto the diamond clusters such that the active-carbon-species in the plasma can attach to diamond surface anisotropically, forming plate diamond grains. The amount of plate-like grains increased with the H2-content in the plasma and evolved into dendrite geometry. In contrast, when H2 is increased, the proportion of atomic hydrogen is abundant and the plasma temperature of hydrogen species is high, so that the atomic hydrogen is very active and can efficiently etch the hydrocarbons adhered on the surfaces of diamonds. The C2-species can thus attach to the surface of diamonds, forming sp3-bonds, and enlarge the diamond grains isotropically. In the second part, by the same mechanism, thus obtained (MCD)UNCD diamond films consist of nano-sized diamond clusters  surrounding the large diamond grains and exhibiting better electron field emission (EFE) properties than the conventional diamond materials with faceted grains.
第三語言摘要
論文目次
目    錄

摘要                                                    I
致謝                                                    IV
目錄                                                    V
圖目錄                                                  VII 
表目錄                                                  X
第一章 序論									1
I.1 研究動機									1 
I.2 鑽石薄膜的特性與應用							2 
I.2-1 鑽石及鑽石薄膜的特性						2 
I.2-2 鑽石薄膜之應用							4 
I.2-3 微米及超奈米晶鑽石薄膜					6
I.3 微米及超奈米晶鑽石薄膜之合成方法與理論			8
I.3-1 鑽石薄膜相關合成方法						8
I.3-2 鑽石膜成核相關理論						13 
I.4 電子場發射理論								20 
I.4-1 金屬的場發射理論						20
I.4-2 半導體場發射的基本理論					22
I.5 鑽石薄膜在電子場發射特性上之應用				24 
I.6 鑽石的負電子親和力特性						26 
第二章 研究方法及實驗步驟							54
II.1 微波電漿CVD鍍鑽石薄膜結構及原理				54
II.1-1 IPLAS CRYNNUS I MPECVD 系統				54
II.1-2 ASTeX 5400 (5 kW) MPECVD 鍍膜系統			55
II.2 鑽石薄膜實驗方法							55
II.2-1 不同氫含量鑽石薄膜實驗方法				55
II.2-2 UNCD核層上成長MCD薄膜實驗方法  		     57
II.3 薄膜之特性分析								61
II.3-1 掃描式電子微顯微鏡(SEM)					62
II.3-2 拉曼光譜分析        					63
II.3-3 穿透式電子顯微鏡                             	64
II.3-4 電子場發射特性之量測     				     66
II.3-5 電漿光發射光譜儀(OES)					67
第三章甲烷/氬氣電漿中成長不同氫含量鑽石薄膜			85 
III.1 表面形貌分析								86
III.1-1 SEM 觀測結果							86
III.1-2 TEM 觀測結果							87
III.1-3 拉曼光譜								89
III.2 電子場發射特性量測(EFE) 						90
III.3 電漿光發射光譜分析(OES) 						91
III.4 極少氫含量的探討							92
III.5 成長機制的研究								94
III.6 結論 									95
第四章 UNCD 核層上成長MCD 鑽石薄膜				     114 
IV.1  表面形貌及場發射特性						114
IV.1-1 動機									114
IV.1-2 結果與討論							116
IV.1-3 小結									118
IV.2 成長機制及結構分析(I) 						118
IV.2-1 動機									118
IV.2-2 結果									119
IV.2-3 討論									122
IV.3 成長機制及結構分析(II)						123
IV.3-1 動機									123
IV.3-2 實驗方法								123
IV-3-3 結果及討論							124
IV.4 結論										125 
第五章 總結 									154
參考文獻										156 

圖目錄
圖I-1 鑽石與石墨的結晶構造............................. 30
圖I-2 鑽石的相圖....................................... 31
圖I-3 鑽石的熱傳導係數................................. 32
圖I-4 微米至超奈米晶表面形態........................... 34
圖I-5 HRTEM 分析超奈米晶................................ 36
圖I-6 超奈米鑽石晶粒間距及及繞射圖 ..................... 36
圖I-7 不同波長超奈米晶Raman 光譜....................... 37
圖I-8 微米及超奈米晶鑽石NEXAFS 光譜.................... 37
圖I-9 C-H-O 圖.......................................... 38
圖I-10 微波電漿CVD 設備圖............................... 39
圖I-11 熱燈絲法設備圖................................... 39
圖I-12 微波電漿放電系統設備圖........................... 40
圖I-13 高週波電漿放電系統設備圖......................... 40
圖I-14 電子迴旋共振(ECR)設備圖.......................... 41
圖I-15 鑽石之椅狀堆積構造............................... 41
圖I-16 石墨及鑽石的活化能相對圖......................... 42
圖I-17 薄膜與基材之早期成核方式......................... 42
圖I-18 與基材不反應者之孕核、成長機制.................... 43
圖I-19 與基材形成碳化物之孕核、成長機制.................. 43
圖I-20 偏壓輔助孕核反應機制............................. 44
圖I-21 偏壓輔助孕核示意圖............................... 45
圖I-22 超音波震盪法..................................... 46
圖I-23 偏壓輔助孕核超音波震盪法......................... 47
圖I-24 金屬-真空能帶示意圖(a)未加電場(b)外加高電場....... 48
圖I-25 v(y),t2(y)和y 的關係圖............................ 50
圖I-26 半導體能帶圖..................................... 51
圖I-27 不考慮電場穿透的半導體場發射示意圖................ 51
圖I-28 考慮電場穿透下n 型半導體的場發射示意圖............ 52
圖I-29 有表面態的n 型半導體............................. 52
圖I-30 鉬尖端的薄膜場發射陰極........................... 53
圖I-31 典型的半導體能帶圖............................... 53
圖II-1 IPLAS CRYNNUS I MPECVD 系統...................... 70
圖II-2 IPLAS 鍍膜系統示意圖.............................. 71
圖II-3 ASTeX 5400 微波電漿鍍膜系統...................... 72
圖II-4 不同氫含量薄膜成長流程........................... 73
圖II-5 MCD 薄膜製備流程.................................. 75
圖II-6 實驗1 成長MCD 薄膜(ASTeX) ........................ 77
圖II-7 掃描式電子微顯微鏡(SEM) .......................... 78
圖II-8 拉曼光譜量測系統................................. 80
圖II-9 拉曼光譜量測系統示意圖........................... 80
圖II-10 穿透式電子顯微鏡量測系統......................... 81
圖II-11 穿透式電子顯微鏡的基本構造....................... 82
圖II-12 電子場發射特性量測示意圖......................... 83
圖II-13 Fowler-Nordheim plot ............................. 84
圖III-1 不同氫含量薄膜SEM ................................ 96
圖III-2 不同氫含量薄膜TEM ................................ 97
圖III-3 不同氫含量薄膜小倍率SAED ......................... 98
圖III-4 薄膜高解析TEM ................................... 99
圖III-5 薄膜暗場像...................................... 100
圖III-6 可見及紫外光拉曼光譜............................ 101
圖III-7 sp3/sp2 對H2含量................................. 102
圖III-8 場發射特性圖.................................... 103
圖III-9 ID/IG ,sp3/sp2 對H2含量........................... 104
圖III-10 不同H2含量的Ar/CH4 電漿光譜.................... 105
圖III-11 不含H2含量的Ar/CH4 電漿光譜.................... 106
圖III-12 不同氫含量OES 及CH/C2 ........................ .107
圖III-13 Ha/C2 & Te ...................................... 108
圖III-14 D0.1 穿透式電子顯微鏡............................ 109
圖III-15 極少氫含量 Raman spectra & EFE ................. 110
圖III-16 D0.1 微結構 ..................................... 111
圖III-17 D1 微結構 ...................................... 112
圖III-18 成長機制示意圖................................. 113
圖IV-1 MCD,UNCD, MCD/UNCD/Si 的掃描式電子微顯微鏡圖 ..... 127
圖IV-2 MCD,UNCD, MCD/UNCD/Si 的Raman spectra,EFE ........ 128
圖IV-3 MCD-p/UNCD/Si 的掃描式電子微顯微鏡圖 ............. 129
圖IV-4 MCD-p/UNCD/Si Raman spectra, EFE................. 130
圖IV-5 MCD-c/UNCD/Si 的掃描式電子微顯微鏡圖 ............. 131
圖IV-6 MCD-c/UNCD/Si Raman spectra, EFE ................. 132
圖IV-7 MCD-t/UNCD/Si 的掃描式電子微顯微鏡圖............. 133
圖IV-8 MCD-t/UNCD/Si Raman spectra, EFE ................ .134
圖IV-9 MCD-t/UNCD/Si 數據............................... 135
圖IV-10 MCD/UNCD/Si 截面圖.............................. 136
圖IV-11 A,B 區結構像.................................... 137
圖IV-12 結構分析(截面圖) ............................... 138
圖IV-13 不同厚度上視圖.................................. 139
圖IV-14 界面區域........................................ 140
圖IV-15 界面區域 (I) ................................... 141
圖IV-16 界面區域 (II) .................................. 142
圖IV-17 界面區域微結構 (II) ............................ 143
圖IV-18 穿透式電子顯微鏡試片製作示意圖................... 144
圖IV-19 2 μm 掃描式電子微顯微鏡圖....................... 145
圖IV-20 2 μm 側面圖..................................... 146
圖IV-21 2 μm 穿透式電子顯微鏡截面........................ 147
圖IV-22 2 μm 氫氣電漿侵蝕截面圖.......................... 148
圖IV-23 2 μm 掃描式電子微顯微鏡上視圖.................... 149
圖IV-24 2 μm MCD/UNCD/Si,UNCD Raman spectra 比較........ 150
圖IV-25 2 μm MCD/UNCD/Si,UNCD EFE 比較................... 151
圖IV-26 CH4/H2 電漿作用簡圖............................... 152
圖IV-27 MCD 成長及其表面的奈米團簇成因及過程簡圖......... 153
表目錄
表I-1 鑽石的各種性質..................................... 28
表I-2 鑽石的各種應用..................................... 29
表I-3 鑽石之耐熱衝擊指數比較............................. 32
表I-4 天然鑽石、鑽石膜及類鑽石膜之性質比較................ 33
表I-5 微米晶鑽石與超奈米晶鑽石的特性比較 ................. 35
表I-6 v(y),t(y)和t2(y)數值對照表......................... 47
表II-1 不同氫含量鍍膜參數................................ 74
表II-2 MCD/UNCD/Si、MCD 及 UNCD 孕核方式參數.............. 74
表II-3 鍍膜腔內升高微波功率程序.......................... 76
表II-4 MCD/UNCD/Si、UNCD 及MCD 成長參數.................. 79
表II-5 碳結構拉曼特性峰.................................. 79
表II-6 計算電子溫度相關資料.............................. 84
參考文獻
參考文獻Reference
[1]. J. E. Field, “The Properties of Diamonds”, (Academic, London, 1979).
[2]. H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995).
[3]. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008).
[4]. M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008).
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004).
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007).
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000).
[8]. Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006).
[9]. D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999).
[10]. J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring) 28.
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F. Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772).
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991).
[14]. P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955).
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962).
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968).
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981).
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3”, Thin Solid Films, 496 698 (2006).
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006).
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004).
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006).
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004)
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008).
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002).
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006).
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008).
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008).
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001).
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004).
[31]. M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007).
[32]. M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, M. Koós, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001).
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003).
[35]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4) 2232 (2004).
[36]. D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas”, Journal of Applied Physics, 84 (4) 1981 (1998).
[37]. P. Zapol, M. Sternberg, L. A. Curtiss, and D. M. Gruen, “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries”, Physical Review B, 65 045403 (2001).
[38]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006).
[39]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991).
[40]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993).
[41]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990).
[42]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992).
[43]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989).
[44]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007).
[45]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009).
[46]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001).
[47]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3937 (1999).
[48]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998).
[49]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C2) and vinylidene into methane C-H bonds”, Chemical Physics Letters, 233 243 (1995).
[50]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH4/H2/N2 plasma-deposited nanodiamond”, Diamond and Related Materials, 15 1126 (2006).
[51]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”,  Thin Solid Films, 290 176 (1996).
[52]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009).
[53]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD Diamond and Related Materials”, 10 1588 (2001).
[54]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997).
[55]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002).
[56]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000).
[57]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998)
[58]. A. Göhl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999).
[59]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990).
[60]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993).
[61]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990).
[62]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation
relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993).
[63]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1 989).
[64]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994).
[65]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of
diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001).
[66]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991).
[67]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991).
[68]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996).
[69]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997).
[70]. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996).
[71]. R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998).
[72]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995).
[73]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995).
[74]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994).
[75]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998).
[76]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992). 
[77]. W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001). 
[78]. D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
[79]. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, J. Appl. Phys. 47 5248 (1976).
[80]. W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett, 68(5) 720 (1996)..
[81]. T. Ono, T. Sakai, N. Sakuma, M. Suzuki, H. Yoshida, S. Uchikoga, “Application of diamond film to cold cathode fluorescent lamps for LCD backlighting”, Diamond & Related Materials, 15 (11) 1998 (2006).
[82]. S. Iannazzo, “Review: A Survery of the Present Status of Vacuum Microelectonics”, Solid-State electronics, 36(3) 301 (1993).
[83]. J. van der weide and R. J. Nemanich, “Angle-resolved photoemission of diamond (111) and (100) surface: negative electron affinity and band measurements”, J. Vac. Sci. Technol., B 12(4) 2475 (1994).
[84]. R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. R. Soc. Lond. A 119 173 (1928).
[85]. P. D. Serapinas, and Y. S. Shalkauskas, “ Homology and concentration sensitivity in equilibrium excitation”, Zh. Prikl. Spektrosk. 251496–501(Translation)( 1976).
[86]. Podder, N. K, Johnson, J. A. III Loch S D and Pindzola M S, “Helium line intensity ratio in microwave-generated plasmas”, Phys. Plasmas115437 – 43 (2004).
[87]. T. Kubo, Y. Nomura, K. Murayama, M. Ogura, S. G. Ri, S. Yamasaki, H. Okushi, “Hall effect of photocurrent in CVD diamond film”, Diamond & Related Materials, 18 779 (2009). 
[88]. W. Jiadao, L. Fengbin, C. Haosheng, C. Darong, “The electron transfer behavior of the hydrogen-terminated boron-doped diamond film electrode”, Materials Chemistry and Physics, 115 590 (2009). 
[89]. Y. L. Li, J. J. Li, X. X. Xia, C. Lu, H. Jin, and C. Z. Gu, “Effect of grain boundary on local surface conductivity of diamond film”, J. Appl. Phys. 105 013706 (2009).
[90]. M. Rayar, P. Supiot, P. Veis, and A. Gicquel, “Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition”, J. Appl. Phys. 104 033304 (2008).
[91]. D. Pradhan, Y. C. Lee, C. W. Pao, W. F. Pong and I. N. Lin, “ Low temperature growth of ultrananocrystalline diamond film and its field emission properties”, Diamond Relat. Mater. 15 2001 (2006).
[92]. M Eckert / E Neyts / A Bogaerts, “On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation”, Journal of Physics D: Applied Physics, 41 032006 (2008).
[93]. Stephen J. Harris, “Mechanism for diamond growth from methyl radicals”, Appl. Phys. Lett. 56 2298 (1990).
[94]. Chuan-Sheng Wang, Huang-Chin Chen, Hsiu-Fung Cheng, and I-Nan, Lin, “Growth behavior of nanocrystalline diamond films on ultranano crystalline diamond nuclei: the transmission electron microscopy studies”, J. Appl. Phys. 105 124311 (2009).
[95]. O.A. Williams, M. Daenen, J. D'Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesládek, D.M. Gruen, “ Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond”, Diamond and Related Materials, 15 654 (2006).
[96]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “ Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, J. Appl. Phys., 90 118 (2001).
[97]. S.J. Askari, F. Akhtar, G. C. Chen, Q. He, F. Y. Wang, X. M. Meng, F. X. Lu, “Synthesis and characterization of nano-crystalline CVD diamond film on pure titanium using Ar/CH4/H2 gas mixture”, Materials Letters, 61 2139 (2007).
[98]. C. Z. Wang, K. M. Ho, “ Structure, dynamics, and electronic properties of diamond-like amorphous carbon”, Phys. Rev. Lett. 71 (8) 1184 (1993).
[99]. H. Kuzmany, R. Pfeiffer, N. Salk, “ The mystery of the 1140 cm-1 Raman line in nanocrystalline diamond films”, Carbon 42 911 (2004).
[100]. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B 61 14095 (2000).
[101]. Z. Sun, J. R. Shi, B. K. Tay, S. P. Lau, “ UV Raman characteristics of nanocrystalline diamond films with different grain size”, Diamond and Related Materials 9 1979 (2000).
[102]. P. M. Koinkara, P. P. Patila, M. A. Morea, V. N. Tondareb, D.S. Joagb, “Field emission studies of CVD diamond thin films: effect of acid treatment”, Vacuum, 72 321 (2004).
[103]. S. Gupta, B. R. Weiner, G. Morell, “Investigations of the electron field emission properties and microstructure correlation in sulfur- incorporated nanocrystalline carbon thin films”, J. Appl. Phys., 91 10088 (2002).
[104]. J. Ma, N. Michael, R. Ashfold, and Y. A. Mankelevich, “Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition”, J. Appl. Physics 105 043302 (2009).
[105]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano and P. Paroli, “ Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62 879 (1993).
[106]. V. M. Donnelly, “Plasma electron temperature sand electron energy distributions measured by trace rare gases optical emission spectroscopy”, J. Phys. D. Appl. Phys.37 217 (2004).
[107]. Y. Kaga, S. Tsuge, K. Kitagawa, and N. Arai, “Temporally Resolved Boltzmann Plots and Excitation Temperatures of Iron Atoms in a Helium Radiofrequency Atomization/Excitation Source for Atomic Emission Spectrometry”, Microchemical Journal 63 34 (1999).
[108]. J. E. Sansonetti and W. C. Martin, Web design: S. L. Young, National Institute of Standards and Technology Gaithersburg, MD 20899
[109]. Z. Shpilman, Sh. Michaelson, R. Kalish, A. Hoffman, “Field emission measurements from carbon films of a predominant nano-crystalline diamond character grown by energetic species”, Diamond and Related Materials, 15 846 (2006).
[110]. P.T. Joseph, N.H. Tai, H. Niu, U.A. Palnitkar, W.F. Pong, H.F. Cheng, I.N. Lin, “Structural modification and enhanced field emission on ultrananocrystalline diamond films by nitrogen ion implantation”, Diamond and Related Materials, 17 1812 (2008).
[111]. S.G. Wang, Q. Zhan, S.F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D.J. Yang, “ Electron Field Emission Properties of Nano-, Submicro- and Micro-Diamond Films”, Phys. Stat. Sol. (a), 193 546 (2002).
[112]. P. W. May, J. N. Harvey, J. A. Smith, and Yu. A. Mankelevich, “Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures”, J. Appl. Phys. 99 104907 (2006).
[113]. Chao Liu, Xingcheng Xiao, Jian Wang, Bing Shi, Vivekananda P. Adiga, Robert W. Carpick, John A. Carlisle, and Orlando Auciello, “Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films”, J. Appl. Phys. 102 074115 (2007).
[114]. V. Mortet, O. Elmazria, M. Nesladek, M.B. Assouar, G. Vanhoyland, J. D'Haen, M.D. Olieslaeger and P. Alnot, “ Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures”, Appl. Phys. Lett. 81 1720 (2002).
[115]. M. Aggleton, J. C. Burton, and P. Taborek, “Cryogenic vacuum tribology of diamond and diamond-like carbon films”, J. Appl. Phys. 106 013504 (2009). 
[116]. Y.C. Lee, S.J. Lin, D. Pradhan and I.N. Lin, “ Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique”, Diamond Relat. Mater., 15 353 (2006).
[117]. R. G. Buckley, T. D. Moustakas, L. Ye, and J. Varon, “ Characterization of filament-assisted chemical vapor deposition diamond films using Raman spectroscopy”, J. Appl. Phys. 66, 3595 (1989).
[118]. P. Achatz, J. A. Garrido, O. A. Williams, P. Bruno, D. M. Gruen, A. Kromka, D. Steinmüller, M. Stutzmann, “ Structural, optical, and electronic properties of nanocrystalline and ultrananocrystalline diamond thin films”, physica status solidi (a), 204 2874 (2007).
[119]. L. J. Chen, N.H. Tai, C.Y. Lee and I.N. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. APPL. PHYS. 101 064308 (2007).
[120]. C.S. Wang, H.C. Chen, H.F. Cheng and I.N. Lin, private communication.
[121]. Yen-Chih Lee, Debabrata Pradhan, Su-Jien Lin, Chih-Ta Chia, Hsiu-Fung Cheng, I-Nan Lin, “ Effect of surface treatment on the electron field emission property of nano-diamond films”, Diamond Relat. Mater., 14 2055 (2005).
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信